全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于紫外辐射传输模型AURIC-2012的气辉辐射模拟

DOI: 10.1007/s11430-015-5166-7, PP. 1768-1780

Keywords: AURIC-2012,气辉模拟,柱辐射强度,体辐射率

Full-Text   Cite this paper   Add to My Lib

Abstract:

?AURIC是由美国计算物理公司CPI与空军Phillips实验室联合开发的中高层大气紫外-可见光-近红外气辉辐射传输模型,是目前唯一用来进行中高层大气气辉辐射模拟研究的通用模型.基于MODTRAN模型的理论,AURIC可以进行80km高度以上的辐射传输模拟并将辐射波段扩展到远紫外波段(80nm).目前,CPI公司只面向全球发布了AURICv1.2软件封装包,其只能进行2000年以前的单点计算,不适用于批量的中高层大气辐射模拟,更不能用于星上大气成分的批量反演.本文利用Matlab对AURICv1.2地磁参数模块、大气电子密度模块、大气温度及各种中性气体成分密度模块进行了替代,将更新模块与原有的辐射计算模块相结合,将AURICv1.2更新为AURIC-2012模型,其可以批量地进行全球的大气辐射传输模拟,可以与星载测量数据相结合进行中高层大气成分的批量反演,如O/N2、电子密度等,同时也为模型辐射计算模块的进一步改进和辐射机制的参数更新奠定基础.基于AURIC-2012模型,进行了气辉临边柱辐射强度模拟和体辐射率计算,并将结果分别与GUVI柱辐射强度和TIDI体辐射率实测值进行了比较,得到两者峰值的模拟平均相对误差都小于20%.最后,利用AURIC-2012对气辉临边柱辐射强度随纬度和高度的分布进行了二维模拟,并基于模拟对昼、夜气辉辐射强度分布特性及影响因素进行了分析.

References

[1]  Evans J S, Strickland D J, Bishop J. 2002. AURIC User''s Guide. Version 1.2
[2]  Evans J S,Lumpe J D, Correira J, et al. 2013. Extension of the AURIC radiative transfer model for mars atmospheric research. American Geophysical Union, Fall Meeting 2013, abstract #P21A-1686
[3]  Estes R W. 2000. Modeling the N2 Lyman-Birge-Hopfield bands in the dayglow including radiative and collisional cascading between the singlet states. J Geophys Res, 105:18557-18573
[4]  Finlay C C, Maus S, Beggan C D, et al. 2010. International geomagnetic reference field:The eleventh generation. Geophys J Int, 183:1216-1230
[5]  Ghosh S N. 2002. The Neutral Upper Atmosphere. Dordrecht:Springer Science Business Media
[6]  Leonovich L A, Mikhalev A V, Leonovich V A. 2011. The 557.7 and 630.0 nm atomic Oxygen midlatitude airglow variations associated with geomagnetic activity. Atmos Oceanic Optics, 24:396-401
[7]  Link R, Sirickland D J, Daniell R E, et al. 1992. AURIC airglow modules:Phase 1 development and application. SPIE, Ultraviolet Technology IV, 1764:132-1441
[8]  Murtagh D P, Donal P. 1989. A self-consistent model of the most common nightglow emissions. Proc. Ninth ESA/PAC Symposium on European Rocket and Balloon Programmes and Related Research. 167-171
[9]  Murtagh D P, Witt G, Stegman J, et al. 1990. An assessment of proposed O(1S) and O2 nightglow excitation parameters. Planet Space Sci, 38:45-53
[10]  Richards P G, Torre D G. 1988. Ratios of photoelectron to EUV ionization rates for aeronomic studies. J Geophys Res, 93:4060-4066
[11]  Richards P G, Torr D G, Reinisch B W, et al. 1994. F2 peak electron density at Millstone Hill and Hobart:Comparison of theory and measurement at solar maximum. J Geophys Res, 99:15005-15016
[12]  Reda I, Andreas A. 2004. Solar position algorithm for solar radiation application. Solar Energy, 76:577-589
[13]  Solomon S C, Abreu V J. 1989. The 630 nm day glow. J Geophys Res, 94:6817-6824
[14]  Stephan A W, Dymond K F, Budzien S A, et al. 2004. Middle ultraviolet remote sensing of the equatorial thermosphere during a geomagnetic storm. Ann Geophys, 22:3203-3209
[15]  Strickland D J, Bishop J, Evans J S, et al. 1999. Atmospheric ultraviolet radiance integrated code(AURIC):Theory, software architecture, inputs, and selected results. J Quant Spectrosc Ra, 62:689-742
[16]  Strickland D J, Meier R R, Walterscheid R L, et al. 2004. Quiet-time seasonal behavior of the thermosphere seen in the far ultraviolet dayglow. J Geophys Res, 109:A01302
[17]  Thirupathaiah P, SunilKrishna M V, Singh V. 2012. Effect of solar activity on the latitude variation of peak emission rate of 557.7 nm dayglow emission under equinox conditions. J Atmos Sol-TerrPhys, 77:209-218
[18]  Upadhayaya A K, Singh V, Tyagi S. 2006. Latitudinal and diurnal variations of some important atomic oxygen dayglow emissions. Indian J Radio & Space Physics, 35:327-334
[19]  Witasse O, Lilenstena J, Lathuillare C. 1999. Modeling the OI 630.0 and 557.7 nm thermospheric dayglow during EISCAT-WINDⅡ coordinated measurements. J Geophys Res, 104:24639-24655
[20]  彭圣锋, 唐义, 王静, 等. 2012. 远紫外光谱遥感反演热层O/N2技术研究. 光谱学与光谱分析, 32:1296-1300
[21]  张永超, 何飞, 张效信, 等. 2014. 电离层LBH日辉辐射大视场计算方法. 地球物理学报, 57:354-363
[22]  江芳, 毛田, 李小银, 等. 2014. 利用OI 135.6 nm夜气辉辐射探测电离层峰值电子密度及电子总含量的研究. 地球物理学报, 57:3679-3687
[23]  Barlier F, Berger C, Falin J, et al. 1978. A thermospheric model based on satellite drag data. Ann Geophys, 34:9-24
[24]  Berger C, Biancale R, Ill M, et al. 1998. Improvement of the empirical thermospheric model DTM:DTM-94-comparative review on various temporal variations and prospects in space geodesy applications. J Geodesy, 72:161-178
[25]  Bilitza D, Reinisch B W. 2008. International reference ionosphere 2007:Improvements and new parameters. Adv Space Res, 42:599-609
[26]  Bilitza D, Altadill D, Zhang Y, et al. 2014. The international reference ionosphere 2012—A model of international collaboration. J Space Weather Space Clim, 4:1-12
[27]  Bishop J, Feldman P D. 2003. Analysis of the Astro-1/Hopkins Ultraviolet Telescope EUV-FUV dayside nadir spectral radiance measurements. J Geophys Res, 108:1243, doi:10.1029/2001JA000330
[28]  Bobik P, PutisM, Bertaina M. 2013. UV night background estimation in South Atlantic Anomaly. 33rd International Cosmic Ray Conference. ID0874:123-127
[29]  BruinsmaS L, Thuillier G, Barlier F. 2003. The DTM-2000 empirical thermosphere model with new data assimilation and constraints at lower boundary:Accuracy and properties. J Atmos Sol-TerrPhys, 65:1053-1070
[30]  Bruinsma S L, Tamagnan D, Biancale R, et al. 2004. Atmospheric densities derived from CHAMP/STAR accelerometer observations. Planet Space Sci, 52:297-312
[31]  Bruinsma S L, Sánchez-Ortiz N, Olmedo E, et al. 2012. Evaluation of the DTM-2009 thermosphere model for benchmarking purposes. J Space Weather Space Clim, 2:1-14
[32]  Culot F, Lathuillere C, Lilensten J, et al. 2004. The OI 630.0 and 557.7 nm dayglow measured by WINDⅡ and modeled by TRANSCAR. Ann Geophys, 22:1947-1960
[33]  Dymond K F. 2009. Remote sensing of nighttime F region peak height and peak density using ultraviolet line ratios. Radio Sci, 44:RS0A28

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133