全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

渤黄海周边验潮站地面垂直运动速率计算

DOI: 10.1007/s11430-015-5167-6, PP. 1737-1746

Keywords: 验潮站,地面垂直运动,海平面,高度计,GaussMarkov模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

?利用验潮站和卫星高度计的海平面观测资料进行联合分析,构建了具有加权约束条件的新的GaussMarkov计算模型,系统给出了渤黄海沿岸9个验潮站的地面垂直运动速率量化值,速率解的不确定性在0.42~0.62mm/a.结果显示,6个验潮站呈地面下降态势,其中塘沽站为(-1.82±0.50)mm/a、龙口站为(-1.65±0.46)mm/a、老虎滩为(-0.88±0.42)mm/a、鲅鱼圈为(-0.58±0.62)mm/a、小长山为(-0.13±0.43)mm/a和烟台站为(-0.01±0.43)mm/a.3个验潮站呈地面上升趋势,秦皇岛为(1.12±0.46)mm/a、葫芦岛为(0.55±0.49)mm/a和成山头为(0.26±0.44)mm/a.塘沽站、龙口站地面下降趋势明显,秦皇岛站地面上升趋势明显.据此可以对验潮站观测海平面进行校正,给出更为准确的沿海海平面变化速率.同样该方法可以作为估计验潮站地面垂直运动速率的有效方法,推广应用于基准潮位核定、地面垂直变化等研究工作中.

References

[1]  陈长霖, 左军成, 杜凌, 何倩倩. 2012. IPCC气候情景下全球海平面长期趋势变化. 海洋学报, 34:29-38
[2]  董鸿闻. 2000. 利用平均海面推定青岛水准原点地区的地壳垂直运动. 黄渤海海洋, 18:25-28
[3]  杜廷芹. 2009. 现代黄河三角洲地区地面沉降特征研究. 博士学位论文. 青岛:中国科学院研究生院. 1-131
[4]  冯浩鉴, 顾旦生, 张莉, 赵继林, 王先昆. 1999. 中国东部地区地壳垂直运动规律及其机制研究. 见:冯浩鉴, 主编. 中国东部沿海地区海平面与陆地垂直运动. 北京:海洋出版社. 1-7
[5]  国家海洋局. 2012. 2012年中国海平面公报. 北京:国家海洋局
[6]  黄立人, 胡惠民, 杨国华. 1991. 渤海西、南岸的海面变化及邻近地区的现代地壳垂直运动. 地壳形变与地震, 11:1-9
[7]  田晖, 周天华, 陈宗镛. 1993. 平均海平面变化的一种随机动态预测模型. 青岛海洋大学学报, 23:33-42
[8]  王慧, 范文静, 张建立, 牟林. 2011. 中国沿海近31年冬季海平面变化特征. 海洋通报, 30:637-643
[9]  王若柏, 周伟, 李风林, 王宏, 扬贵业, 姚忠杰, 匡绍君. 2003. 天津地区构造沉降及控沉远景问题. 水文地质工程地质, 30:12-17
[10]  于宜法. 2004. 中国近海海平面变化研究进展. 中国海洋大学学报, 34:713-719
[11]  左军成, 于宜法, 陈宗镛. 1994. 中国沿岸海平面变化原因的探讨. 地球科学进展, 9:48-53
[12]  左军成, 陈宗镛, 周天华. 1996. 中国沿岸海平面变化的一种本征分析和随机动态联合模型. 海洋学报, 18:7-14
[13]  Blewitt G, Altamini Z, Davis J, Gross R, Kuo C Y, Lemoine F, Neilan R, Plag H P, Rothacher M, Shum C K, Sideris M G, Schone T, Tregoning P, Zerbini S. 2010. Geodetic observations and global reference frame contributions to understanding sea level rise and variability. In:Church J, Woodworth P, Aarup T, eds. Understanding Sea Level Rise and Variability. Chichester:Wiley-Blackwell. 256-284
[14]  Buble G, Bennett R A, Hreinsdottir S. 2010. Tide gauge and GPS measurements of crustal motion and sea level rise along the eastern margin of Adria. J Geophy Res, 115:B02404, doi:10.1029/2008JB006155
[15]  Cazenave A, Dominh K, Ponchaut F, Soudarin L, Cretaux J F, Le Provost C. 1999. Sea level changes from TOPEX-POSEIDON altimetry and tide gauges, and vertical crustal motions from DORIS. Geophy Res Lett, 26:2077-2080
[16]  Chen M C, Zuo J C, Chen M X, Zhang J L, Du L. 2008. Spatial distribution of sea level trend and annual range in the China Seas from 50 long term tidal gauge station data. In:Jin S C, Seok W H, Prinsenberg S, eds. ISOPE Symposium. Vancouver. 583-587
[17]  Church J A, White N J, Coleman R, Lambeck K, Mitrovica J X. 2004. Estimates of the regional distribution of sea level rise over the 1950 to 2000 period. J Clim, 17:2609-2625
[18]  Douglas B C. 1991. Global sea level rise. J Geophy Res, 96:6981-6992
[19]  Douglas B C. 1997. Global sea rise:A redetermination. Surv Geophys, 18:279-292
[20]  Douglas B C. 2001. Sea level change in the era of the recording tide gauge. In:Douglas B C, Kearney M S, Leatherman S P, eds. Sea Level Rise:History and Consequences. California:Academic Press. 37-64
[21]  IPCC. 2007. Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press. 996
[22]  Koch K. 1999. Parameter Estimation and Hypothesis Testing in Linear Models. 2nd ed. Berlin:Springer. 333
[23]  Kuo C Y, Shum C K, Braun A, Mitrovica J X. 2004. Vertical crustal motion determined by satellite altimetry and tide gauge data in Fennoscandia. Geophy Res Lett, 31:L01608, doi:10.1029/2003GL019106
[24]  Kuo C Y, Shum C K, Braun A, Cheng K C, Yi Y. 2008. Vertical motion determined using satellite altimetry and tide gauges. Terr Atmos Ocean Sci, 19:21-35
[25]  Lin J. 2000. Correction of tide gauge measurements to absolute sea level by vertical motion solutions. Master Thesis. Columbus:Ohio State University
[26]  Mazzotti S, Jones C, Thomson R E. 2008. Relative and absolute sea level rise in western Canada and northwestern United States from a combined tide gauge-GPS analysis. J Geophy Res, 113:C11019, doi:10.1029/2008JC004835
[27]  Merrifield M, Aarup T, Allen A, Aman A, Caldwell P, Bradshaw E, Zavala J. 2009. The global sea level observing system(GLOSS). Proceedings of Ocean Obs, 9
[28]  Nerem R S, Mitchum G T. 2002. Estimates of vertical crustal motion derived from differences of TOPEX/POSEIDON and tide gauge sea level measurements. Geophy Res Lett, 29:1934, doi:10.1029/2002GL015037
[29]  Peltier W R. 2004. Global glacial isostasy and the surface of the ice-age earth:The ICE-5G(VM2) model and GRACE. Annu Rev Earth Planet Sci, 32:111-149
[30]  Teferle F N, Bingley R M, Williams S D P, Baker T F, Dodson A H. 2006. Using continuous GPS and absolute gravity to separate vertical land movements and changes in sea-level at tide-gauges in the UK. Philos Trans R Soc A-Math Phys Eng Sci, 364:917-930
[31]  Woodworth P L. 1990. A search for accelerations in records of European mean sea level. Int J Climatol, 10:129-143
[32]  W?ppelmann G, Martin M B, Bouin M N, Altamimi Z. 2007. Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide. Glob Planet Change, 57:396-406
[33]  W?ppelmann G, Marcos M. 2012. Coastal sea level rise in southern Europe and the nonclimate contribution of vertical land motion. J Geophy Res, 117:C01007, doi:10.1029/2011JC007469

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133