Antler G, Turchyn A V, Rennie V, Herut B, Sivan O. 2013. Coupled sulfur and oxygen isotope insight into bacterial sulfate reduction in the natural environment. Geochim Cosmochim Acta, 118:98-117
[7]
Balci N, Shanks Ⅲ W C, Mayer B, Mandernack K W. 2007. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite. Geochim Cosmochim Acta, 71:3796-3811
[8]
Boetius A, Suess E. 2004. Hydrate Ridge:A natural laboratory for the study of microbial life fueled by methane from near-surface gas hydrates. Chem Geol, 205:291-310
[9]
Borowski W S, Paull C K, Ussler Ⅲ W. 1996. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology, 24:655-658
[10]
Borowski W S, Paull C K, Ussler Ⅲ W. 1999. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments:Sensitivity to underlying methane and gas hydrates. Mar Geol, 159:131-154
[11]
Borowski W S, Rodriguez N M, Paull C K, Ussler Ⅲ W. 2013. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record? Mar Pet Geol, 43:381-395
[12]
Bottrell S H, Newton R J. 2006. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes. Earth-Sci Rev, 75:59-83
[13]
Butler I B, B?ttcher M E, Rickard D, Oldroyd A. 2004. Sulfur isotope partitioning during experimental formation of pyrite via the polysulfide and hydrogen sulfide pathways:Implications for the interpretation of sedimentary and hydrothermal pyrite isotope records. Earth Planet Sci Lett, 228:495-509
[14]
Canfield D E, Thamdrup B. 1994. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science, 266:1973-1975
[15]
Canfield D E, Thamdrup B. 1996. Fate of elemental sulfur in an intertidal sediment. Fems Microbiol Ecol, 19:95-103
[16]
Canfield D E, Farquhar J, Zerkle A L. 2010. High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog. Geology, 38:415-418
[17]
Deusner C, Holler T, Arnold G L, Bernasconi S M, Formolo M J, Brunner B. 2014. Sulfur and oxygen isotope fractionation during sulfate reduction coupled to anaerobic oxidation of methane is dependent on methane concentration. Earth Planet Sci Lett, 399:61-73
[18]
Gartman A, Luther Ⅲ G W. 2013. Comparison of pyrite(FeS2) synthesis mechanisms to reproduce natural FeS2 nanoparticles found at hydrothermal vents. Geochim Cosmochim Acta, 120:447-458
[19]
Habicht K S, Canfield D E. 2001. Isotope fractionation by sulfate-reducing natural populations and the isotopic composition of sulfide in marine sediments. Geology, 29:555-558
[20]
Han X Q, Suess E, Huang Y Y, Wu N Y, Bohrmann G, Su X, Eisenhauer A, Rehder G, Fang Y X. 2008. Jiulong methane reef:Microbial mediation of seep carbonates in the South China Sea. Mar Geol, 249:243-256
[21]
Holmkvist L, Kamyshny Jr A, Vogt C, Vamvakopoulos K, Ferdelman T G, J?rgensen B B. 2011a. Sulfate reduction below the sulfate-methane transition in Black Sea sediments. Deep-Sea Res Part I-Oceanogr Res Pap, 58:493-504
[22]
Holmkvist L, Ferdelman T G, J?rgensen B B. 2011b. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment(Aarhus Bay, Denmark). Geochim Cosmochim Acta, 75:3581-3599
[23]
J?rgensen B B, B?ttcher M E, Lüschen H, Neretin L N, Volkov I I. 2004. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochim Cosmochim Acta, 68:2095-2118
[24]
Kamyshny A, Ferdelman T G. 2010. Dynamics of zerovalent sulfur species including polysulfides at seep sites on intertidal sand flats(Wadden Sea, North Sea). Mar Chem, 121:17-26
[25]
Leavitt W D, Halevy I, Bradley A S, Johnston D T. 2013. Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record. Proc Natl Acad Sci USA, 110:11244-11249
[26]
Leloup J, Fossing H, Kohls K, Holmkvist L, Borowski C, J?rgensen B B. 2009. Sulfate-reducing bacteria in marine sediment(Aarhus Bay, Denmark):Abundance and diversity related to geochemical zonation. Environ Microbiol, 11:1278-1291
[27]
Lichtschlag A, Kamyshny A, Ferdelman T G, de Beer D. 2013. Intermediate sulfur oxidation state compounds in the euxinic surface sediments of the Dvurechenskii mud volcano(Blach Sea). Geochim Cosmochim Acta, 105:130-145
[28]
Luther G I Ⅲ. 1991. Pyrite synthesis via polysulphide compounds. Geochim Cosmochim Acta, 55:2839-2849
[29]
Mangalo M, Meckenstock R U, Stichler W, Einsiedl F. 2007. Stable isotope fractionation during bacterial sulfate reduction is controlled by reoxidation of intermediates. Geochim Cosmochim Acta, 71:4161-4171
[30]
Milucka J, Ferdelman T G, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers M M M. 2012. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature, 491:541-546
[31]
Niemann H, L?sekann T, de Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter E J, Schlüter M, Klages M, Foucher J P, Boetius A. 2006. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature, 443:854-858
[32]
Otte S, Kuenen J G, Nielsen L P, Paerl H W, Zopfi J, Schulz H N, Teske A, Strotmann B, Gallardo V A, J?rgensen B B. 1999. Nitrogen, carbon and sulfur metabolism in natural Thioploca samples. Appl Environ Microbiol, 65:3148-3157
[33]
Parnell J, Boyee A, Mark D, Bowden S, Spinks S. 2010. Early oxygenation of the terrestrial environment during the esoproterozoic. Nature, 468:290-293
[34]
Peketi A, Mazumdar A, Joshi R K, Patil D J, Srinivas P L, Dayal A M. 2012. Tracing the Paleo sulfate-methane transition zones and H2S seepage events in marine sediments:An application of C-S-Mo systematics. Geochem Geophys Geosyst, 13:doi:10.1029/2012GC004288
[35]
Philippot P, Van Zuilen M, Lepot K, Thomazo C, Farquhar J, Van Kranendonk M J. 2007. Early Archaean microorganisms preferred elemental sulfur, not sulfate. Science, 317:1534-1537
[36]
Preisler A, de Beer D, Lichtschlag A, Lavik G, Boetius A, J?rgensen B B. 2007. Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment. ISME J, 1:341-353
[37]
Reimer P J, Baillie M G L, Bard E, Bayliss A, Beck J W, Blackwell P G, Ramsey C B, Buck C E, Burr G S, Edwards R L, Friedrich M, Grootes P M, Guilderson T P, Hajdas I, Heaton T J, Hogg A G, Hughen K A, Kaiser K F, Kromer B, McCormac F G, Manning S W, Reimer R W, Richards D A, Southon J R, Talamo S, Turney C S M, van der Plicht J, Weyhenmeyer C E. 2009. Intcal09 and Marine09 radiocarbon age calibration curves, 0-50000 years cal BP. Radiocarbon, 51:1111-1150
[38]
Rickard D. 1975. Kinetics and mechanism of pyrite formation at low temperatures. Am J Sci, 275:636-652
[39]
Rickard D. 1997. Kinetics of pyrite formation by the H2S oxidation of Fe(Ⅱ) monosulfide in aqueous solutions between 25 and 125℃:The rate equation. Geochim Cosmochim Acta, 61:115-134
[40]
Rickard D, Luther G Ⅲ. 1997. Kinetics of pyrite formation by the H2S oxidation of Fe(Ⅱ) monosulfide in aqueous solutions between 25 and 125℃:The mechanism. Geochim Cosmochim Acta, 61:135-147
[41]
Rossel E E, Elvert M, Ramette A, Boetius A, Hinrich K U. 2011. Factors controlling the distribution of anaerobic methanotrophic communities in marine environments:Evidence from intact polar membrane lipids. Geochim Cosmochim Acta, 75:164-184
[42]
Sassen R, Roberts H H, Carney R. Milkov A V, DeFreitas D A, Lanoil B, Zhang C L. 2004. Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope:Relation to microbial processes. Chem Geol, 205:195-217
[43]
Schippers A, Sand W. 1999. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol, 65:319-321
[44]
Schippers A, J?rgensen B B. 2001. Oxidation of pyrite and iron sulfide by manganese dioxide in marine sediments. Geochim Cosmochim Acta, 65:915-922
[45]
Sim M S, Ono S, Donovan K, Templer S P, Boask T. 2011. Effect of electron donors on the fractionation of sulfur isotopes by a marine Desulfovibrio sp. Geochim Cosmochim Acta, 75:4244-4259
[46]
Stuiver M, Reimer P J. 1993. Extended 14C data base and revised CALIB 3.0 14C Age calibration program. Radiocarbon, 35:215-230
[47]
Thamdrup B, Finster K, Hansen J W, Bak F. 1993. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Environ Microbiol, 59:101-108
[48]
Vogel M B, Des Marais D J, Parenteau M N, Jahnke L, Turk K A, Kubo M D Y. 2010. Biological influences on modern sulfates:Textures and composition of gypsum deposits from Guerrero Negro, Baja California Sur, Mexico. Sediment Geol, 223:265-280
[49]
Yao W, Millero F J. 1993. The rate of sulfide oxidation by δMnO2 in seawater. Geochim Cosmochim Acta, 57:3359-3365
[50]
Yao W, Millero F J. 1996. Oxidation of hydrogen sulfide by hydrous Fe(Ⅲ) oxides in seawater. Mar Chem, 52:1-16
[51]
Zhang G X, Yang S X, Zhang M, Liang J Q, Li J G, Holland M, Schultheiss P, GMGS2 Science Team. 2014. GMGS2 Expedition investigates rick and complex gas hydrate environment in the South China Sea. Fire Ice, 14:1-5
[52]
Zerkle A L, Kamyshny A, Kump L R, Farquhar J, Oduro H, Arthur M A. 2010. Sulfur cycling in a stratified euxinic lake with moderately high sulfate:Constraints from quadruple S isotopes. Geochim Cosmochim Acta, 74:4953-4970
[53]
Zopfi J, Ferdelman T G, Fossing H, 2004. Distribution and fate of sulfur intermediates-sulfur tetrathionate, thiosulfate, and elemental sulfur-in marine systems. In:Amend J P, Edwards K J, Lyons T W, eds. Sulfur Biogeochemistry—Past and Present. Boulder:The Geological Society of America. 97-116
[54]
Zopfi J, B?ttcher M B, J?rgensen B B. 2008. Biogeochemistry of sulfur and iron in Thioploca-colonized surface sediments in the upwelling area off centra chile. Geochim Cosmochim Acta, 72:827-843