全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

南海北部沉积物中单质硫颗粒的发现及意义

DOI: 10.1007/s11430-015-5182-7, PP. 1747-1756

Keywords: 单质硫,硫酸盐-甲烷转换带,浅表层沉积物,南海北部

Full-Text   Cite this paper   Add to My Lib

Abstract:

?单质硫作为海洋沉积环境中硫循环的中间产物,对于研究硫的物质循环和同位素分馏过程均有重要的意义.本研究在对南海北部九龙甲烷礁海域沉积物中自生矿物进行显微形貌观察时,首次通过扫描电子显微镜和激光拉曼光谱等发现并确认了单质硫颗粒的存在.根据单质硫的显微形貌、分布、黄铁矿的含量和硫同位素组成等,获得如下认识:(1)单质硫颗粒的分布不仅与黄铁矿及其氧化物共存,而且与粘土矿物等共存,主要分布于矿物集合体的表层;(2)尽管单质硫颗粒在形貌上略有差异,但单质硫颗粒主要出现在硫酸盐-甲烷转换带内(SMTZ)及其附近深度的沉积物中;(3)单质硫颗粒的成因很可能是部分H2S被氧化的结果,其形成过程与SMTZ的变迁存在密切关系.甲烷等烃类气体的异常供给加剧了SMTZ内的甲烷厌氧氧化反应(AOM)所伴随的异化硫酸盐还原反应(DSR)的强度,大量H2S的生成促进了铁硫化物等自生矿物的沉淀,进一步提高了硫的循环效率,为单质硫颗粒的形成提供了有利的条件.南海北部九龙甲烷礁海域沉积物中单质硫颗粒的发现及其形成过程可能与该海域沉积物中甲烷渗漏通量的变化和SMTZ的变迁关系密切,也可能与该海域天然气水合物藏的演化存在一定关系.

References

[1]  史春潇, 雷怀彦, 赵晶, 张劼, 韩超. 2014. 南海北部九龙甲烷礁邻区沉积物层中垂向细菌群落结构特征研究. 沉积学报, 32:1072-1082
[2]  吴庐山, 杨胜雄, 梁金强, 苏新, 付少英, 沙志彬, 杨涛. 2013. 南海北部神狐海域沉积物中孔隙水硫酸盐梯度变化特征及其对天然气水合物的指示意义. 中国科学:地球科学, 43:339-350
[3]  吴丽芳, 雷怀彦, 欧文佳, 韩超. 2014. 南海北部柱状沉积物中黄铁矿的分布特征和形貌研究. 应用海洋学学报, 33:21-28
[4]  谢蕾, 王家生, 林杞. 2012. 南海北部神狐水合物赋存区浅表层沉积物自生矿物特征及其成因探讨. 岩石矿物学杂志, 31:382-392
[5]  张劼, 雷怀彦, 欧文佳, 杨玉峰, 龚楚君, 史春潇. 2014. 南海北部陆坡973-4柱沉积物中硫酸盐——甲烷转换带(SMTZ)研究及其对水合物的指示意义. 天然气地球科学, 25:1811-1820
[6]  Antler G, Turchyn A V, Rennie V, Herut B, Sivan O. 2013. Coupled sulfur and oxygen isotope insight into bacterial sulfate reduction in the natural environment. Geochim Cosmochim Acta, 118:98-117
[7]  Balci N, Shanks Ⅲ W C, Mayer B, Mandernack K W. 2007. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite. Geochim Cosmochim Acta, 71:3796-3811
[8]  Boetius A, Suess E. 2004. Hydrate Ridge:A natural laboratory for the study of microbial life fueled by methane from near-surface gas hydrates. Chem Geol, 205:291-310
[9]  Borowski W S, Paull C K, Ussler Ⅲ W. 1996. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology, 24:655-658
[10]  Borowski W S, Paull C K, Ussler Ⅲ W. 1999. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments:Sensitivity to underlying methane and gas hydrates. Mar Geol, 159:131-154
[11]  Borowski W S, Rodriguez N M, Paull C K, Ussler Ⅲ W. 2013. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record? Mar Pet Geol, 43:381-395
[12]  Bottrell S H, Newton R J. 2006. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes. Earth-Sci Rev, 75:59-83
[13]  Butler I B, B?ttcher M E, Rickard D, Oldroyd A. 2004. Sulfur isotope partitioning during experimental formation of pyrite via the polysulfide and hydrogen sulfide pathways:Implications for the interpretation of sedimentary and hydrothermal pyrite isotope records. Earth Planet Sci Lett, 228:495-509
[14]  Canfield D E, Thamdrup B. 1994. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science, 266:1973-1975
[15]  Canfield D E, Thamdrup B. 1996. Fate of elemental sulfur in an intertidal sediment. Fems Microbiol Ecol, 19:95-103
[16]  Canfield D E, Farquhar J, Zerkle A L. 2010. High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog. Geology, 38:415-418
[17]  Deusner C, Holler T, Arnold G L, Bernasconi S M, Formolo M J, Brunner B. 2014. Sulfur and oxygen isotope fractionation during sulfate reduction coupled to anaerobic oxidation of methane is dependent on methane concentration. Earth Planet Sci Lett, 399:61-73
[18]  Gartman A, Luther Ⅲ G W. 2013. Comparison of pyrite(FeS2) synthesis mechanisms to reproduce natural FeS2 nanoparticles found at hydrothermal vents. Geochim Cosmochim Acta, 120:447-458
[19]  Habicht K S, Canfield D E. 2001. Isotope fractionation by sulfate-reducing natural populations and the isotopic composition of sulfide in marine sediments. Geology, 29:555-558
[20]  Han X Q, Suess E, Huang Y Y, Wu N Y, Bohrmann G, Su X, Eisenhauer A, Rehder G, Fang Y X. 2008. Jiulong methane reef:Microbial mediation of seep carbonates in the South China Sea. Mar Geol, 249:243-256
[21]  Holmkvist L, Kamyshny Jr A, Vogt C, Vamvakopoulos K, Ferdelman T G, J?rgensen B B. 2011a. Sulfate reduction below the sulfate-methane transition in Black Sea sediments. Deep-Sea Res Part I-Oceanogr Res Pap, 58:493-504
[22]  Holmkvist L, Ferdelman T G, J?rgensen B B. 2011b. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment(Aarhus Bay, Denmark). Geochim Cosmochim Acta, 75:3581-3599
[23]  J?rgensen B B, B?ttcher M E, Lüschen H, Neretin L N, Volkov I I. 2004. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochim Cosmochim Acta, 68:2095-2118
[24]  Kamyshny A, Ferdelman T G. 2010. Dynamics of zerovalent sulfur species including polysulfides at seep sites on intertidal sand flats(Wadden Sea, North Sea). Mar Chem, 121:17-26
[25]  Leavitt W D, Halevy I, Bradley A S, Johnston D T. 2013. Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record. Proc Natl Acad Sci USA, 110:11244-11249
[26]  Leloup J, Fossing H, Kohls K, Holmkvist L, Borowski C, J?rgensen B B. 2009. Sulfate-reducing bacteria in marine sediment(Aarhus Bay, Denmark):Abundance and diversity related to geochemical zonation. Environ Microbiol, 11:1278-1291
[27]  Lichtschlag A, Kamyshny A, Ferdelman T G, de Beer D. 2013. Intermediate sulfur oxidation state compounds in the euxinic surface sediments of the Dvurechenskii mud volcano(Blach Sea). Geochim Cosmochim Acta, 105:130-145
[28]  Luther G I Ⅲ. 1991. Pyrite synthesis via polysulphide compounds. Geochim Cosmochim Acta, 55:2839-2849
[29]  Mangalo M, Meckenstock R U, Stichler W, Einsiedl F. 2007. Stable isotope fractionation during bacterial sulfate reduction is controlled by reoxidation of intermediates. Geochim Cosmochim Acta, 71:4161-4171
[30]  Milucka J, Ferdelman T G, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers M M M. 2012. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature, 491:541-546
[31]  Niemann H, L?sekann T, de Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter E J, Schlüter M, Klages M, Foucher J P, Boetius A. 2006. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature, 443:854-858
[32]  Otte S, Kuenen J G, Nielsen L P, Paerl H W, Zopfi J, Schulz H N, Teske A, Strotmann B, Gallardo V A, J?rgensen B B. 1999. Nitrogen, carbon and sulfur metabolism in natural Thioploca samples. Appl Environ Microbiol, 65:3148-3157
[33]  Parnell J, Boyee A, Mark D, Bowden S, Spinks S. 2010. Early oxygenation of the terrestrial environment during the esoproterozoic. Nature, 468:290-293
[34]  Peketi A, Mazumdar A, Joshi R K, Patil D J, Srinivas P L, Dayal A M. 2012. Tracing the Paleo sulfate-methane transition zones and H2S seepage events in marine sediments:An application of C-S-Mo systematics. Geochem Geophys Geosyst, 13:doi:10.1029/2012GC004288
[35]  Philippot P, Van Zuilen M, Lepot K, Thomazo C, Farquhar J, Van Kranendonk M J. 2007. Early Archaean microorganisms preferred elemental sulfur, not sulfate. Science, 317:1534-1537
[36]  Preisler A, de Beer D, Lichtschlag A, Lavik G, Boetius A, J?rgensen B B. 2007. Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment. ISME J, 1:341-353
[37]  Reimer P J, Baillie M G L, Bard E, Bayliss A, Beck J W, Blackwell P G, Ramsey C B, Buck C E, Burr G S, Edwards R L, Friedrich M, Grootes P M, Guilderson T P, Hajdas I, Heaton T J, Hogg A G, Hughen K A, Kaiser K F, Kromer B, McCormac F G, Manning S W, Reimer R W, Richards D A, Southon J R, Talamo S, Turney C S M, van der Plicht J, Weyhenmeyer C E. 2009. Intcal09 and Marine09 radiocarbon age calibration curves, 0-50000 years cal BP. Radiocarbon, 51:1111-1150
[38]  Rickard D. 1975. Kinetics and mechanism of pyrite formation at low temperatures. Am J Sci, 275:636-652
[39]  Rickard D. 1997. Kinetics of pyrite formation by the H2S oxidation of Fe(Ⅱ) monosulfide in aqueous solutions between 25 and 125℃:The rate equation. Geochim Cosmochim Acta, 61:115-134
[40]  Rickard D, Luther G Ⅲ. 1997. Kinetics of pyrite formation by the H2S oxidation of Fe(Ⅱ) monosulfide in aqueous solutions between 25 and 125℃:The mechanism. Geochim Cosmochim Acta, 61:135-147
[41]  Rossel E E, Elvert M, Ramette A, Boetius A, Hinrich K U. 2011. Factors controlling the distribution of anaerobic methanotrophic communities in marine environments:Evidence from intact polar membrane lipids. Geochim Cosmochim Acta, 75:164-184
[42]  Sassen R, Roberts H H, Carney R. Milkov A V, DeFreitas D A, Lanoil B, Zhang C L. 2004. Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope:Relation to microbial processes. Chem Geol, 205:195-217
[43]  Schippers A, Sand W. 1999. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol, 65:319-321
[44]  Schippers A, J?rgensen B B. 2001. Oxidation of pyrite and iron sulfide by manganese dioxide in marine sediments. Geochim Cosmochim Acta, 65:915-922
[45]  Sim M S, Ono S, Donovan K, Templer S P, Boask T. 2011. Effect of electron donors on the fractionation of sulfur isotopes by a marine Desulfovibrio sp. Geochim Cosmochim Acta, 75:4244-4259
[46]  Stuiver M, Reimer P J. 1993. Extended 14C data base and revised CALIB 3.0 14C Age calibration program. Radiocarbon, 35:215-230
[47]  Thamdrup B, Finster K, Hansen J W, Bak F. 1993. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Environ Microbiol, 59:101-108
[48]  Vogel M B, Des Marais D J, Parenteau M N, Jahnke L, Turk K A, Kubo M D Y. 2010. Biological influences on modern sulfates:Textures and composition of gypsum deposits from Guerrero Negro, Baja California Sur, Mexico. Sediment Geol, 223:265-280
[49]  Yao W, Millero F J. 1993. The rate of sulfide oxidation by δMnO2 in seawater. Geochim Cosmochim Acta, 57:3359-3365
[50]  Yao W, Millero F J. 1996. Oxidation of hydrogen sulfide by hydrous Fe(Ⅲ) oxides in seawater. Mar Chem, 52:1-16
[51]  Zhang G X, Yang S X, Zhang M, Liang J Q, Li J G, Holland M, Schultheiss P, GMGS2 Science Team. 2014. GMGS2 Expedition investigates rick and complex gas hydrate environment in the South China Sea. Fire Ice, 14:1-5
[52]  Zerkle A L, Kamyshny A, Kump L R, Farquhar J, Oduro H, Arthur M A. 2010. Sulfur cycling in a stratified euxinic lake with moderately high sulfate:Constraints from quadruple S isotopes. Geochim Cosmochim Acta, 74:4953-4970
[53]  Zopfi J, Ferdelman T G, Fossing H, 2004. Distribution and fate of sulfur intermediates-sulfur tetrathionate, thiosulfate, and elemental sulfur-in marine systems. In:Amend J P, Edwards K J, Lyons T W, eds. Sulfur Biogeochemistry—Past and Present. Boulder:The Geological Society of America. 97-116
[54]  Zopfi J, B?ttcher M B, J?rgensen B B. 2008. Biogeochemistry of sulfur and iron in Thioploca-colonized surface sediments in the upwelling area off centra chile. Geochim Cosmochim Acta, 72:827-843

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133