全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中国北部背景区域霾天气溶胶的水溶性无机离子组分及混合状态

DOI: 10.1007/s11430-015-5131-5, PP. 1728-1736

Keywords: 水溶性无机离子,单颗粒,二次颗粒物,混合状态,背景区域,灰霾事件

Full-Text   Cite this paper   Add to My Lib

Abstract:

?2011年1月16~31日在华北平原山东半岛背景地区采集大气气溶胶样品,利用离子色谱技术及透射电子显微镜技术分别获得了霾天和清洁天PM2.5中水溶性无机离子的浓度特征和单颗粒的形貌、粒径和混合状态.研究期间PM2.5平均质量浓度为(54.0±29.9)μgm-3,污染天和清洁天的质量浓度分别为(62.5±26.8)和(19.9±11.5)μgm-3,前者是后者的3倍.研究表明,水溶性无机离子占PM2.5质量浓度的61.4%,SO42-,NO3-和NH4+三种离子的质量浓度和为(19.0±11.5)μgm-3,占PM2.5水溶性无机离子的69.8%~89.4%.霾天三者质量浓度表现出不同的粒径分布特征:SO42-与NH4+呈单峰分布,峰值在0.56~1.8μm处,而NO3-粒径呈双峰分布,主峰为0.56~1.8μm,次峰为5.6~10μm.背景区域大气颗粒物主要为二次颗粒(70.9%)和含碳颗粒(13.3%),且污染天的颗粒物老化现象明显,混合程度较为复杂.结合48h气团来源分析结果,污染天气气团主要来自长距离输送和山东半岛局地低气流的传输,其中长距离输送的污染气团在到达采样点前经过了11~19h的近地面污染物累积过程.因此,污染地区背景点大气气溶胶颗粒虽然质量浓度和数量浓度低于污染城市点,但是颗粒物老化程度明显增加,这可能极大改变颗粒物的吸湿及光学特性,该研究结果可作为进一步研究背景点大气气溶胶气候效应的依据.

References

[1]  李名升, 张建辉, 罗海江, 等. 2011. 中国二氧化硫减排分析及减排潜力. 地理科学, 31:1065-1071
[2]  李卫军, 邵龙义. 2013. 雾霾与沙尘污染天气气溶胶单颗粒研究. 北京:科学出版社. 27-34
[3]  芦亚玲, 贾铭鑫, 李文凯, 等. 2014. 北极夏季大气气溶胶单颗粒研究. 中国环境科学, 34:1642-1648
[4]  徐宏辉, 王跃思, 杨勇杰, 等. 2008. 泰山顶夏季大气气溶胶中水溶性离子的浓度及其粒径分布研究. 环境科学, 29:2305-2309
[5]  张小曳, 孙俊英, 王亚强, 等. 2013. 中国雾霾的成因及其治理的思考. 科学通报, 58:1178-1187
[6]  郑南, 吉昂, 王河锦, 等. 2009. 北京市冬季霾天气可吸入颗粒物的矿物学研究. 北京大学学报(自然科学版), 45:825-832
[7]  Che H Z, Zhang X Y, Li Y, et al. 2007. Horizontal visibility trends in China 1981-2005. Geophys Res Lett, 34:L24706
[8]  Du H H, Kong L D, Cheng T T, et al. 2011. Insights into summertime haze pollution events over Shanghai based on online water soluble ionic composition of aerosols. Atmos Environ, 45:5131-5137
[9]  Kan H D, London S J, Chen G H, et al. 2007. Differentiating the effects of fine and coarse particles on daily mortality in Shanghai, China. Environ Int, 33:376-384
[10]  Li W J, Shao L Y. 2009a. Transmission electron microscopy study of aerosol particles from the brown hazes in northern China. J Geophys Res, 114:D09302, doi:10.1029/2008JD011285
[11]  Li W J, Shao L Y. 2009b. Observation of nitrate coatings on atmospheric mineral dust particles. Atmos Chem Phys, 9:1863-1871
[12]  Li W J, Shao L Y. 2010. Mixing and water-soluble characteristics of particulate organic compounds in individual urban aerosol particles. J Geophys Res, 115:D02301, doi:10.1029/2009JD012575
[13]  Li W J, Shao L Y, Wang Z S, et al. 2010. Size, composition, and mixing state of individual aerosol particles in a South China coastal city. J Environ Sci, 22:561-569
[14]  Li W J, Shi Z B, Yan C, et al. 2013a. Individual metal-bearing particles in a regional haze caused by firecracker and firework emissions. Sci Total Environ, 443:464-469
[15]  Li W J, Wang Y, Collett J L, et al. 2013b. Microscopic evaluation of trace metals in cloud droplets in an acid precipitation region. Environ Sci Technol, 47:4172-4180
[16]  Li W J, Shao L Y, Shi Z B, et al. 2014. Mixing state and hygroscopicity of dust and haze particles before leaving Asian continent. J Geophys Res, 119:1044-1059
[17]  Li X H, He K B, Li C C, et al. 2013.PM2.5 mass, chemical composition, and light extinction before and during the 2008 Beijing Olympics. J Geophys Res, 118:12158-12167
[18]  Lu S L, Feng M, Yao Z K, et al. 2010. Physicochemical characterization and cytotoxicity of ambient coarse, fine, and ultrafine particulate matters in Shanghai atmosphere. Atmos Environ, 45:736-744
[19]  Pathak R K, Wu W S, Wang T. 2009. Summertime PM2.5 ionic species in four major cities of China:Nitrate formation in an ammonia-deficient atmosphere. Atmos Chem Phys, 9:1711-1722
[20]  Richter A, Burrows J P, Nuss H, et al. 2005. Increase in tropospheric nitrogen dioxide over China observed from space. Nature, 437:129-132
[21]  Sun Y L, Zhuang G S, Tang A H, et al. 2006. Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing. Environ Sci Technol, 40:3148-3155
[22]  Sun Z Q, Mu Y J, Liu Y J, et al. 2013. A comparison study on airborne particles during haze days and non-haze days in Beijing. Sci Total Environ, 456-457:1-8
[23]  Sun Y L, Wang Z F, Fu P Q, et al. 2013. Aerosol composition, sources and processes during wintertime in Beijing, China. Atmos Chem Phys, 13:4577-4592
[24]  Watson J G. 2002. Visibility:Science and regulation. J Air Waste Manag Assoc, 52:628-713
[25]  Xing L, Fu T M, Cao J J, et al. 2013. Seasonal and spatial variability of the OM/OC mass ratios and high regional correlation between oxalic acid and zinc in Chinese urban organic aerosols. Atmos Chem Phys, 13:4307-4318
[26]  Yang F, Tan J, Zhao Q, et al. 2011. Characteristics of PM2.5 speciation in representative megacities and across China. Atmos Chem Phys, 11:5207-5219
[27]  Yuan Q, Li W J, Zhou S Z, et al. 2015. Integrated evaluation of aerosols during haze-fog episodes at one regional background site in North China Plain. Atmos Res, 156:102-110
[28]  Zhang Q, He K B, Huo H. 2012. Policy:Cleaning China''s air. Nature, 484:161-162
[29]  Zhang R Y, Wang L, Khalizov A F, et al. 2009. Formation of nanoparticles of blue haze enhanced by anthropogenic pollution. Proc Natl Acad Sci USA, 106:17650-17654
[30]  Zhou Y, Wang T, Gao X M, et al. 2010. Continuous observations of water soluble ions in PM2.5 at Mount Tai(1534 ma.s.l.) in central-eastern China. J Atmos Chem, 64:107-127
[31]  Zhu Y H, Yang L X, Yuan Q, et al. 2014. Airborne particulate polycyclic aromatic hydrocarbon(PAH) pollution in a background site in the North China Plain:Concentration, size distribution, toxicity and sources. Sci Total Environ, 466-467:357-368

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133