全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

台风“麦莎”(Matsa)诱发平流层重力波的数值模拟

, PP. 1786-1794

Keywords: 重力波,平流层,台风“麦莎”,WRF模式,数值模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

?本文利用新一代中尺度预报模式WRF-ARW(V3.0)对2005年台风“麦莎”诱发的平流层重力波进行了数值模拟研究.覆盖整个“麦莎”台风主要生命史为期8天的模拟再现了“麦莎”的主要特征,与观测资料进行对比,模拟结果在台风基本特征(路径、强度、螺旋云带分布)以及平流层大气平均状态方面上,都与观测资料有较好的一致性.在此基础上,对“麦莎”诱发的平流层重力波进行了分析研究,分析结果表明:伴随台风向西北方向移动,在其上空以台风为中心的区域中,持续地出现显著平流层重力波,这些波动呈弧状的波阵面离开台风,并主要在背景流的上游中传播.这些波动特征表明了平流层重力波与台风之间存在紧密联系,我们把这种波动称为“热带气旋-平流层重力波”.模拟结果还显示,这些波动应该具有相当大的水平尺度,才使得在20km高度上清晰的波阵面出现在距台风中心1000km以外的位置,这与过去的观测分析结果揭示的与台风相伴的平流层大尺度重力波现象是一致的.

References

[1]  1 Holton J R. The influence of gravity wave breaking on the general circulation of the middle atmosphere. J Atmos Sci, 1983, 40: 2497–2507??
[2]  2 Holton J R, Haynes P H, McIntyre M E, et al. Stratosphere-troposphere exchange. Rev Geophys, 1995, 33: 403–439??
[3]  3 Fritts D C, Alexander M J. Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys, 2003, 41, doi: 10.1029/2001RG000106
[4]  4 Lindzen R S, Holton J R. A theory of the Quasi-Biennial Oscillation. J Atmos Sci, 1968, 25: 1095–1107??
[5]  5 Holton J R, Lindzen R S. An update theory for the Quasi-Biennial Cycle of the tropical stratosphere. J Atmos Sci, 1972, 29: 1076–1080??
[6]  6 Lu D, VanZandt T E, Clark W L. VHF Doppler radar observations of buoyancy waves associated with thunderstorms. J Atmos Sci, 1984, 41: 272–282??
[7]  7 Fritts D C, Nastrom G D. Sources of mesoscale variability of gravity waves, part ii: Frontal, convective and jet stream excitation. J Atmos Sci, 1992, 49: 111–127??
[8]  8 Fovell R, Durran D, Holton J R. Numerical simulations of convectively generated stratospheric gravity waves. J Atmos Sci, 1992, 49: 1427–1442??
[9]  9 Piani C, Durran D, Alexander M J, et al. A numerical study of three-dimensional gravity wave triggered by deep tropical convection and their role in the dynamics of the QBO. J Atmos Sci, 2000, 57: 3689–3702??
[10]  10 Chen Z, Lu D. Numerical simulation on stratospheric gravity waves above mid-latitude deep convection. Adv Space Res, 2001, 27: 1659–1666??
[11]  11 Lane T P, Reeder M J, Clark T L. Numerical modeling of gravity wave generation by deep tropical convection. J Atmos Sci, 2001, 58: 1249–1274??
[12]  12 Clark T L, Hauf T, Kuettner J P. Convectively forced internal gravity waves: Results from two-dimensional numerical experiments. Q J R Meteorol Soc, 1986, 112: 899–925??
[13]  13 Salby M L, Garcia R R. Transient response to localized episodic heating in the tropics. Part I: Excitation and short-time near-field behavior. J Atmos Sci, 1987, 44: 458–498??
[14]  14 Pfister L, Chan K R, Bui T P, et al. Gravity Waves generated by a tropical cyclone during the STEP tropical field program: A case study. J Geophys Res, 1993, 98: 8611–8638??
[15]  15 Dhaka S K, Takahashi M, Shibagaki Y, et al. Gravity wave generation in the lower stratosphere due to passage of the typhoon 9426 (Orchid) observed by the MU radar at Shigaraki (34.85°N, 136.10°E). J Geophys Res, 2003, 108, doi: 10.1029/2003JD003489
[16]  16 Kim S Y, Chun H Y, Baik J J. A numerical study of gravity waves induced by convection associated with Typhoon Rusa. Geophys Res Lett, 2005, 32, doi: 10.1029/2005GL024662
[17]  17 Kim S Y, Chun H Y, Wu D L. A study on stratospheric gravity waves generated by typhoon Ewiniar: Numerical simulations and satellite observations. J Geophys Res, 2009, 114, doi: 10.1029/2009JD011971
[18]  18 Kuester M A, Alexander M J, Ray E A. A model study of gravity waves over hurricane Humberto (2001). J Atmos Sci, 2008, 65: 3231–3246??
[19]  19 Sato K. Small-scale wind disturbances observed by the MU radar during the passage of typhoon Kelly. J Atmos Sci, 1993, 50: 518–537??
[20]  20 Chane-Ming F, Roff G, Robert L, et al. Gravity wave characteristics over Tromelin Island during the passage of cyclone Hudah. Geophys Res Lett, 2002, 29, doi: 10.1029/2001GL013286
[21]  21 Chane-Ming F, Chen Z, Roux F. Analysis of gravity-waves produced by intense tropical cyclones. Ann Geophys, 2010, 28: 531–547??
[22]  22 李英, 王继志, 陈联寿, 等. 台风麦莎(Matsa)的波状降水特征研究. 科学通报, 2007, 52: 344–353
[23]  23 Preusse P, Ern M, Chen Z, et al. Investigation of gravity waves based on satellite measurements. AFO Newsletter, 2003, 5: 3–6
[24]  24 Hong S Y, Dudhia J, Chen S H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Wea Rev, 2004, 132: 103–120??
[25]  25 Kain J S, Fritsch J M. A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci, 1990, 47: 2784–2802??
[26]  26 Hong S Y, Noh Y, Dudhia J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev, 2006, 134: 2318–2341??
[27]  27 Mlawer E J, Taubman S J, Brown P D, et al. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J Geophys Res, 1997, 102: 16663–16682??
[28]  28 Dudhia J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci, 1989, 46: 3077–3107??
[29]  29 朱乾根, 林景瑞, 寿绍文, 等. 天气学原理和方法. 第3 版. 北京: 气象出版社, 2000. 508
[30]  30 Andrews D G, Holton J R, Leovy C B. Middle Atmosphere Dynamics. Orlando: Academic Press, 1987. 189

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133