全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

湾流区涡旋对海洋垂向混合的影响

, PP. 744-752

Keywords: Argo,涡旋,混合,湾流区,风应力,水体翻转

Full-Text   Cite this paper   Add to My Lib

Abstract:

?用Argo高分辨率温盐数据和海面高度异常(SLA)数据对湾流区中尺度涡内外的混合情况进行了统计分析,结果表明,平均情况下300~540m深度处反气旋涡内的混合率明显高于背景场,平均值量级达到4.0×10-5m2s-1,而涡外和气旋涡内平均混合率分别为1.6×10-5和0.8×10-5m2s-1.反气旋涡内混合率量级在10-4m2s-1以上的概率达到29%,而涡外和气旋涡内情况下达到10-4m2s-1以上的概率仅为12%和5%.540~900m深度上,涡内外的平均混合率量级一致.38个反气旋涡中有24个出现涡内部混合增强的现象,其中22个涡内剖面在观测时间前局地有大风过程存在或持续,混合情况与风应力有较好的对应关系,说明反气旋涡利于风生近惯性能量的下传.12个反气旋涡内剖面在540m以下部分仍存在Thorpe尺度在5m以上的水体翻转,甚至有3个达到了20m以上,说明强混合现象在某些区域540m以下的较深层仍然存在.

References

[1]  Alford M H, Whitmont M. 2007. Seasonal and spatial variability of near-inertial kinetic energy from historical moored velocity records. J Phys Oceanogr, 37: 2022-2037
[2]  Chaigneau A, Eldin G, Dewitte B. 2009. Eddy activity in the four major upwelling systems from satellite altimetry (1992-2007). Prog Oceanogr, 83: 117-123
[3]  Chaigneau A, Le Texier M, Eldin G, et al. 2011. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats. J Geophys Res, 116: C11025
[4]  Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Prog Oceanogr, 91: 167-216
[5]  Gargett A, Garner T. 2008. Determining Thorpe scales from ship-lowered CTD density profiles. J Atmos Ocean Technol, 25: 1657-1670
[6]  Garrett C. 2001. What is the “near-inertial” band and why is it different from the rest of the internal wave spectrum? J Phys Oceanogr, 31: 962-971
[7]  Gregg M C. 1989. Scaling turbulent dissipation in the thermocline. J Geophys Res, 94: 9686-9698
[8]  Gregg M C, Sanford T B, Winkel D P. 2003. Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422: 513-515
[9]  Jing Z, Wu L. 2013. Low-Frequency modulation of turbulent diapycnal mixing by anticyclonic eddies inferred from the HOTtime series. J Phys Oceanogr, 43: 824-835
[10]  Jing Z, Wu L, Li L, et al. 2011. Turbulent diapycnal mixing in the subtropical northwestern Pacific: Spatial-seasonal variations and role of eddies. J Geophys Res, 116, doi: 10.1029/2011JC007142
[11]  Klein P, Smith S L, Lapeyre G. 2004. Organization of near-inertial energy by an eddy field. Q J R Meteorol Soc, 130: 1153-1166
[12]  Kunze E. 1985. Near-inertial wave propagation in geostrophic shear. J Phys Oceanogr, 15: 544-565
[13]  Kunze E, Firing E, Hummon J M, et al. 2006. Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J Phys Oceanogr, 36: 1553-1576
[14]  Kunze E, Schmitt R W, Toole J M. 1995. The energy balance in a warm-core ring’s near-inertial critical layer. J Phys Oceanogr, 25: 942-957
[15]  Lee D K, Niiler P P. 1998. The inertial chimney: The near-inertial energy drainage from the ocean surface to the deep layer. J Geophys Res, 103: 7579-7591
[16]  MacKinnon J A, Alford M H, Pinkel R, et al. 2013. The latitudinal dependence of shear and mixing in the Pacific transiting the critical latitude for PSI. J Phys Oceanogr, 43: 3-16
[17]  Mauritzen C, Polzin K L, Mccartney M S, et al. 2002. Evidence in hydrography and density fine structure for enhanced vertical mixing over the Mid-Atlantic Ridge in the western Atlantic. J Geophys Res. 107: 3147
[18]  Munk W, Wunsch C. 1998. Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res Part I-Oceanogr Res Pap, 45: 1977-2010
[19]  Naviera Garabato A C, Polzin K L, King B A, et al. 2004. Widespread intense turbulent mixing in the Southern Ocean. Science, 303: 210-213
[20]  Nikurashin M, Ferrari R. 2011. Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys Res Lett, 38: L8610
[21]  Osborn T R. 1980. Estimates of the local rate of vertical diffusion from dissipation measurements (ocean turbulence). J Phys Oceanogr, 10: 83-89
[22]  Polzin K L, Toole J M, Ledwell J R, et al. 1997. Spatial variability of turbulent mixing in the abyssal ocean. Science, 276: 93-96
[23]  Polzin K L, Toole J M, Schmitt R W. 1995. Finescale parameterizations of turbulent dissipation. J Phys Oceanogr, 25: 306-328
[24]  Scott R B, Goff J A, Garabato A C N, et al. 2011. Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography. J Geophys Res, 116: C9029
[25]  Sharples J, Moore C, Rippeth T, et al. 2001. Phytoplankton distribution and survival in the thermocline. Limnol Oceanogr, 46: 486-496
[26]  Souza J M A C, de Boyer Montegut C, Le Traon P Y. 2011. Comparison between three implementations of automatic identification algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean. Ocean Sci Discuss, 7: 317-334
[27]  St. Laurent L C, Simmons H L, Jayne S R. 2002. Estimating tidally driven mixing in the deep ocean. Geophys Res Lett, 29: 2106
[28]  Straub D N. 2003. Instability of 2D flows to hydrostatic 3D perturbations. J Atmos Sci, 60: 79-102
[29]  Sun H, Kunze E. 1999. Internal wave-wave interactions. Part Ⅱ: Spectral energy transfer and turbulence production. J Phys Oceanogr, 29: 2905-2919
[30]  Sun L, Zheng Q, Wang D, et al. 2011. A case study of near-inertial oscillation in the South China Sea using mooring observations and satellite altimeter data. J Oceanogr, 67: 677-687
[31]  Thompson A F, Gille S T, Mackinnon J A, et al. 2007. Spatial and temporal patterns of small-scale mixing in Drake Passage. J Phys Oceanogr, 37: 572-592
[32]  Thorpe S A. 1977. Turbulence and mixing in a Scottish loch. Philos Trans R Soc A-Math Phys Sci, 286: 125-181
[33]  Thorpe S A. 2007. An Introduction to Ocean Turbulence. Cambridge: Cambridge University Press. 130
[34]  Wardle R, Marshall J. 2000. Representation of eddies in primitive equation models by a PV flux. J Phys Oceanogr, 30: 2481-2503
[35]  Wijesekera H, Padman L, Dillon T, et al. 1993. The Application of Internal-Wave dissipation models to a region of strong mixing. J Phys Oceanogr, 23: 269-286
[36]  Wu L, Jing Z, Riser S, et al. 2011. Seasonal and spatial variations of Southern Ocean diapycnal mixing from Argo profiling floats. Nat Geosci, 4: 363-366
[37]  Wunsch C, Ferrari R. 2004. Vertical mixing, energy, and the general circulation of the oceans. Annu Rev Fluid Mech, 36: 281-314
[38]  Zhai X, Greatbatch R J, Eden C. 2007. Spreading of near-inertial energy in a 1/12 model of the North Atlantic Ocean. Geophys Res Lett, 34: L10609
[39]  Zhai X, Greatbatch R J, Eden C, et al. 2009. On the loss of wind-induced near-inertial energy to turbulent mixing in the upper ocean. J Phys Oceanogr, 39: 3040-3045
[40]  Zhai X, Greatbatch R J, Zhao J. 2005. Enhanced vertical propagation of storm-induced near-inertial energy in an eddying ocean channel model. Geophys Res Lett, 32: L18602
[41]  Zhang X, Han G, Wang D, et al. 2011. Effect of surface wave breaking on the surface boundary layer of temperature in the Yellow Sea in summer. Ocean Modell, 38: 267-279
[42]  Chen G, Hou Y, Chu X. 2011. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure. J Geophys Res, 116: C6018
[43]  Danioux E, Klein P, Rivière P. 2008. Propagation of wind energy into the deep ocean through a fully turbulent mesoscale eddy field. J Phys Oceanogr, 38: 2224-2241
[44]  D’Asaro E A. 1995. Upper-ocean inertial currents forced by a strong storm. III: Interaction of inertial currents and mesoscale eddies. J Phys Oceanogr, 25: 2953-2958
[45]  Eden C, Greatbatch R J. 2008. Diapycnal mixing by meso-scale eddies. Ocean Modell, 23: 113-120
[46]  Finnigan T D, Luther D S, Lukas R. 2002. Observations of enhanced diapycnal mixing near the Hawaiian Ridge. J Phys Oceanogr, 32: 2988-3002
[47]  Ford R, Mcintyre M E, Norton W A. 2000. Balance and the slow quasimanifold: Some explicit results. J Atmos Sci, 57: 1236-1254
[48]  Furuichi N, Hibiya T, Niwa Y. 2008. Model-predicted distribution of wind-induced internal wave energy in the world''s oceans. J Geophys Res, 113: C9034
[49]  Galbraith P S, Kelley D E. 1996. Identifying overturns in CTD profiles. J Atmos Ocean Technol, 13: 688-702

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133