Benjamin J F, Stuart J B, Clive W A, et al. 2007. Atmospheric carbon dioxide linked with Mesozoic and early Cenozoic climate change. Letters, 29: 1038-1042
[21]
Boyce C K, Brodribb T J, Feild T S, et al. 2009. Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proc R Soc B-Biol Sci, 276: 1771-1776
[22]
Brodribb T J, Holbrook N M, Edwards E J, et al. 2003. Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant Cell Environ, 26: 443-450
[23]
Dong L, Wang L, Zhang Y, et al. 2006. An auxin-inducible F-box protein CEGENDUO negatively regulates auxin-mediated lateral root formation in Arabidopsis. Plant Mol Biol, 60: 599-615
[24]
Farquhar G D, Ehleringer J R, Hubick K T. 1989. Carbon Isotope discrimination and photosynthesis. Plant Physiol Plant Mol Biol, 40: 503-507
[25]
Farquhar G D, O’Leary M H, Berry J A. 1982. On the relationship between carbon isotope discrimination and the Intercellular carbon dioxide concentration in leaves. Funct Plant Biol, 9: 121-137
[26]
García A, Wagner F, Hoof T B V, et al. 2006. Stomatal responses in deciduous oaks from southern Europe to the anthropogenic atmospheric CO2 increase refining the stomatal-based CO2 proxy. Rev Palaeobot Palynology, 141: 303-312
[27]
Grace J, Berninger F, Nagy L. 2002. Impacts of climate change on the tree line. Ann Bot-London, 90: 537-544
[28]
Gray J E, Holroyd G H. 2000. Vanderlee F M, et al. The hic signaling pathway Links CO2 perception to stomatal development. Nature, 408: 713-716
[29]
Hultine K R, Marshall J D. 2000. Altitude trends in conifer leaf morphology and stable composition. Oecologia, 123: 32-40
[30]
Li M C, Zhu J J. 2010. Species-specific variation in wood δ13C along vertical canopy gradients and its relationship with leaf δ13C in a temperate secondary forest. Plant Ecol, 212: 543-551
[31]
Peter K, Van D W, Steven W, et al. 2002. Betancourt et al. Leaf δ13C variability with elevation, slope aspect, and precipitation in the southwest United States. Oecologia, 132: 332-343
[32]
Qiang W Y, Wang X L, Chen T, et al. 2003. Variations of stomatal density and carbon isotope values of picea crassifolia at different altitudes in the Qilian Mountains. Trees, 17: 258-262
[33]
Qiu Y P, Yu D Q. 2009. Over-expression of the stree-induced OsWKRW45 enhances disease resistance and drought tolerance in Arabidopsis. Environ Exp Bot, 65: 35-47
[34]
Royer D L. 2001. Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Rev Palaeobot Palynology, 114: 1-28
[35]
Royer D L. 2004. CO2 as a primary driver of Phanerozoic climate. GSA Today, 14: 4-10
[36]
Schenk H J, Jackson R B. 2002. Rooting depths, later root spreads and belowground/aboveground allometries of plants in water-limited ecosystems. J Ecol, 90: 480-489
[37]
Shen Y Y, Wang X F, Wu F Q, et al. 2006. The Mg-chelatase H subunit is an abscisic acid receptor. Nature, 443: 823-826
[38]
Shi Z M, Liu S R, Liu X L, et al. 2006. Altitudinal variation in photosynthetic capacity, diffusional conductance, and δ13C of butterfly bush (Buddleja davidii Franch) plants growing at high elevations. Physiol Plant, 128: 722-731
[39]
Shigeo S S, Tomoo S, Yu I, et al. 2010. Stomagen positively regulates stomatal density in Arabidopsis. Nature, 463: 241-244
[40]
Sun B N, Dilcher D L, Beerling D J, et al. 2003. Variation in Ginkgo biloba L leaf characters across a climatic gradient in China. Proc Natl Acad Sci USA, 100: 7141-7146
[41]
Sun B N, Wu J Y, Liu Y S, et al. 2011. Reconstructing Neogene vegetation and climates to infer tectonic uplift in western Yunnan China. Paleogeogr Paleoclimatol Paleoecol, 278: 1-9
Beerling D J, Royer D L. 2002. Reading CO2 signal from fossil stomata. New Phytol, 153: 387-397
[62]
Beerling D J, Chaloner W G. 2011. The impact of atmospheric CO2 and temperature change on stomatal density: Observations from Quercus robur lammas leaves. Ann Bot-London, 71: 231-235
[63]
Beerling D J, Osborne C P, Chaloner W G. 2001. Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the late palaeozoicera. Nature, 410: 352-354
[64]
Beerling D J. 1999. Stomatal density and index: Theory and application. In: Jones T P, ed. Fossil plant and spore: Modern techniques. London: Geological Society. 251-254
[65]
Tim J B, Taylor S F, Lawren S. 2010. Viewing leaf structure and evolution from a hydraulic perspective. Funct Plant Biol, 37, 488-498
[66]
Kouwenberg C L R, Kürschner W M, Kürschner W M. 2007. Stomatal frequency change over altitudinal gradients: Prospects for paleoaltimetry. Rev Mineral Geochem, 66: 215-241
[67]
van Hoof T B, Kürschner W M, Wagner F, et al. 2006. Stomatal index response of Quercus robur and Quercus petraea to the anthropogenic atmospheric CO2 increase. Plant Ecol, 183: 237-243
[68]
Víctor R, Brent E, Wei S, et al. 2009. Williams drought-induced hydraulic limitations constrain leaf gas exchange recovery after precipitation pulses in the C3 woody legume, Prosopis velutina. New Phytol, 181: 672-682
[69]
Woodward F I. 1987. Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature, 327: 617-618
[70]
Xie S P, Sun B N, Yan D F, et al. 2006. Leaf cuticular characters of Ginkgo and implications for paleo-atmospheric CO2 in the Jurassic. Prog Nat Sci, 16: 258-263
[71]
Xu Z Z, Zhou G S, Wang Y H. 2007. Combined effects of elevated CO2 and soil drought on carbon and nitrogen allocation of the desert shrub Caragana intermedia. Plant Soil, 301: 87-97