全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

祁连山3种被子植物叶特征随海拔变化及其内陆高海拔模式

, PP. 706-714

Keywords: 祁连山,被子植物,叶特征(SD,SI,ED,VD和δ13C)变化,内陆高海拔模式

Full-Text   Cite this paper   Add to My Lib

Abstract:

?被子植物叶特征随海拔梯度的变化规律在中国内陆高海拔地区亟待研究.本文在祁连山中、东部2300~3640ma.s.l.范围内,对3种被子植物(乔木Betulaalbo-sinensis及灌木Caraganajubata和Berberisdiaphana)采集叶样品共39份,在实验室分析了气孔密度(SD)、气孔指数(SI)、细胞密度(ED)、叶脉密度(VD)及碳同位素比值等5个指标.结果表明,5个指标均与海拔呈显著甚至极显著线性相关关系,其中,SD,SI和VD均与海拔呈负相关,而ED和δ13C均与海拔呈正相关.这种关系组合明显不同于低海拔湿润环境中主要由大气二氧化碳浓度变化形成的SD,SI和δ13C等与海拔呈正相关的关系组合模式.其主要是随海拔升高温度降低引起的植物生理性干旱所致,因而可暂称为植物叶变化的内陆高海拔模式.

References

[1]  寇祥明, 杨利民, 韩梅, 等. 2006. 不同施水量对五叶地锦幼苗生长和气孔特征的影响. 吉林农业大学学报, 28: 168-172
[2]  李冀南, 李朴芳, 孔海燕, 等. 2011. 干旱胁迫下植物根源化学信号研究进展. 生态学报, 31: 2610-2620
[3]  刘慧民, 王坤, 李奇石, 等. 2003. 五叶地锦低温处理条件下与抗旱相关部分生理生化指标的变化规律. 东北林业大学学报, 31: 74-75
[4]  刘婧, 王宝山, 谢仙芝. 2011. 植物气孔发育及其调控研究. 遗传, 33: 131-137
[5]  刘小宁, 马剑英, 孙伟, 等. 2010. 高山植物稳定碳同位素沿海拔梯度响应机制的研究进展. 山地学报, 1: 37-46
[6]  刘子会, 郭秀林, 王刚, 等. 2004. 干旱胁迫与ABA的信号传导. 植物学报, 21: 228-234
[7]  罗璐, 申国珍, 谢宗强. 2011. 神农架海拔梯度上4种典型森林的土壤呼吸组分及其对温度的敏感性. 植物生态学报, 7: 40-48
[8]  潘红丽, 李迈和, 蔡小虎, 等. 2009. 海拔梯度上的植物生长与生理生态特性. 生态环境学报, 18: 722-730
[9]  祁健, 马克明, 张育新. 2007. 辽东栎(Quercus liaotungensis )叶特性沿海拔梯度的变化及其环境解释. 生态学报, 27: 0930-0937
[10]  任书杰, 于贵瑞. 2011. 中国区域478种C3植物叶片碳稳定性同位素组成与水分利用效率. 植物生态学报, 35: 119-124
[11]  上官周平, 郑淑霞. 2008. 黄土高原植物水分生理生态与气侯环境变化. 北京: 科学出版社. 14-202
[12]  史作民. 2004. 高山植物叶片δ13C的海拔响应及其机理, 生态学报, 24: 2901-2906
[13]  孙柏年, 肖良, 解三平, 等. 2007. 中国北方侏罗白垩纪化石银杏气孔参数对古气候的响应. 中国地质学报, 81: 801-840
[14]  孙柏年, 闫德飞, 解三平, 等. 2009. 化石植物气孔与碳同位素的分析及其应用. 北京: 科学出版社. 13-108
[15]  孙晓丽, 李勇, 才华, 等. 2011. 拟南芥bZIP1转录因子通过与ABRE元件结合调节ABA信号传导. 作物学报, 37: 612-619
[16]  王静英, 李永春, 尹钧, 等. 2008. 干旱胁迫下植物的信号转导及基因表达研究进展. 中国农学通, 24: 271-275
[17]  旺罗, 吕厚远, 吴乃琴, 等. 2003. 青藏高原现生禾本科植物的δ13C与海拔高度的关系. 第四纪研究, 23: 573-580
[18]  韦梅琴, 王晋民, 熊辉岩, 等. 2012. 草石蚕不同海拔叶表特征的比较研究. 北方园艺, 7: 179-181
[19]  夏金婵, 吕强, 郭梅芳, 等. 2008. 植物冷驯化相关信号机制. 中国生物化学与分子生物学报, 24: 295-301
[20]  Benjamin J F, Stuart J B, Clive W A, et al. 2007. Atmospheric carbon dioxide linked with Mesozoic and early Cenozoic climate change. Letters, 29: 1038-1042
[21]  Boyce C K, Brodribb T J, Feild T S, et al. 2009. Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proc R Soc B-Biol Sci, 276: 1771-1776
[22]  Brodribb T J, Holbrook N M, Edwards E J, et al. 2003. Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant Cell Environ, 26: 443-450
[23]  Dong L, Wang L, Zhang Y, et al. 2006. An auxin-inducible F-box protein CEGENDUO negatively regulates auxin-mediated lateral root formation in Arabidopsis. Plant Mol Biol, 60: 599-615
[24]  Farquhar G D, Ehleringer J R, Hubick K T. 1989. Carbon Isotope discrimination and photosynthesis. Plant Physiol Plant Mol Biol, 40: 503-507
[25]  Farquhar G D, O’Leary M H, Berry J A. 1982. On the relationship between carbon isotope discrimination and the Intercellular carbon dioxide concentration in leaves. Funct Plant Biol, 9: 121-137
[26]  García A, Wagner F, Hoof T B V, et al. 2006. Stomatal responses in deciduous oaks from southern Europe to the anthropogenic atmospheric CO2 increase refining the stomatal-based CO2 proxy. Rev Palaeobot Palynology, 141: 303-312
[27]  Grace J, Berninger F, Nagy L. 2002. Impacts of climate change on the tree line. Ann Bot-London, 90: 537-544
[28]  Gray J E, Holroyd G H. 2000. Vanderlee F M, et al. The hic signaling pathway Links CO2 perception to stomatal development. Nature, 408: 713-716
[29]  Hultine K R, Marshall J D. 2000. Altitude trends in conifer leaf morphology and stable composition. Oecologia, 123: 32-40
[30]  Li M C, Zhu J J. 2010. Species-specific variation in wood δ13C along vertical canopy gradients and its relationship with leaf δ13C in a temperate secondary forest. Plant Ecol, 212: 543-551
[31]  Peter K, Van D W, Steven W, et al. 2002. Betancourt et al. Leaf δ13C variability with elevation, slope aspect, and precipitation in the southwest United States. Oecologia, 132: 332-343
[32]  Qiang W Y, Wang X L, Chen T, et al. 2003. Variations of stomatal density and carbon isotope values of picea crassifolia at different altitudes in the Qilian Mountains. Trees, 17: 258-262
[33]  Qiu Y P, Yu D Q. 2009. Over-expression of the stree-induced OsWKRW45 enhances disease resistance and drought tolerance in Arabidopsis. Environ Exp Bot, 65: 35-47
[34]  Royer D L. 2001. Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Rev Palaeobot Palynology, 114: 1-28
[35]  Royer D L. 2004. CO2 as a primary driver of Phanerozoic climate. GSA Today, 14: 4-10
[36]  Schenk H J, Jackson R B. 2002. Rooting depths, later root spreads and belowground/aboveground allometries of plants in water-limited ecosystems. J Ecol, 90: 480-489
[37]  Shen Y Y, Wang X F, Wu F Q, et al. 2006. The Mg-chelatase H subunit is an abscisic acid receptor. Nature, 443: 823-826
[38]  Shi Z M, Liu S R, Liu X L, et al. 2006. Altitudinal variation in photosynthetic capacity, diffusional conductance, and δ13C of butterfly bush (Buddleja davidii Franch) plants growing at high elevations. Physiol Plant, 128: 722-731
[39]  Shigeo S S, Tomoo S, Yu I, et al. 2010. Stomagen positively regulates stomatal density in Arabidopsis. Nature, 463: 241-244
[40]  Sun B N, Dilcher D L, Beerling D J, et al. 2003. Variation in Ginkgo biloba L leaf characters across a climatic gradient in China. Proc Natl Acad Sci USA, 100: 7141-7146
[41]  Sun B N, Wu J Y, Liu Y S, et al. 2011. Reconstructing Neogene vegetation and climates to infer tectonic uplift in western Yunnan China. Paleogeogr Paleoclimatol Paleoecol, 278: 1-9
[42]  冯秋红, 程瑞梅, 史作民, 等. 2011. 海拔梯度对巴郎山奇花柳叶片δ13C的影响. 应用生态学报, 22: 2841-2848
[43]  高春娟, 夏晓剑, 师恺, 等. 2012. 植物气孔对全球气候变化的响应及其调控防御机制. 植物生理学报, 48: 19-28
[44]  胡启武, 吴琴, 郑林, 等. 2010. 青海云杉叶片稳定性碳同位素组成对水分温度变化的响应. 山地学报, 28: 713-717
[45]  胡清静, 张成君, 郭景, 等. 2010. 环境因素对干旱-半干旱区城市银杏叶片碳同位素组成的影响. 环境生态学报, 19: 1543-1549
[46]  黄俊丽, 马娜娜, 车树刚, 等. 2011. 植物叶脉发育的分子机制. 生命科学, 23: 804-811
[47]  贾瑞玲, 秦倩倩, 张彦萍. 2009. 拟南芥气孔发育的分子遗传机制. 细胞生物学杂志, 6: 817-822
[48]  徐坤, 邹琦, 赵燕. 2003. 土壤水分胁迫与遮荫对生姜生长特性的影响. 应用生态学报, 14: 1465-1648
[49]  徐世健, 陈拓, 冯虎元, 等. 2002. 新疆乌鲁木齐河上游植物叶片δ13C空间分异的环境分析. 自然科学进展, 12: 617-620
[50]  许智宏, 李家洋. 2006. 中国植物激素研究: 过去、现在和未来. 植物学通报, 23: 433-442
[51]  阳园燕, 郭安红, 安顺清. 2006. 土壤干旱条件下根源信号ABA参与作物气孔调节的数值模拟. 应用生态学报, 17: 65-70
[52]  杨利民, 韩梅, 周广胜, 等. 2007. 中国东北样带关键种羊草水分利用效率与气孔密度.生态学报, 27: 16-24
[53]  杨启良, 张富仓, 刘小刚, 等. 2011. 环境因素对植物导水率影响的研究综述. 中国生态农业学报, 19: 456-461
[54]  张鹏, 王刚, 张涛, 等. 2010. 祁连山两种优势乔木叶片δ13C的海拔响应及其机理. 植物生态学报, 34: 125-133
[55]  张岁岐, 山仑. 2001. 根系吸水机理研究进展. 应用与环境生物学报, 7: 396-402
[56]  郑凤英, 彭少麟. 2003. 不同尺度上植物叶气孔导度对升高CO2的响应. 植物生态学报, 22: 26-30
[57]  周光胜, 王玉辉. 1999. 全球变化与气候-植被分类研究和展望. 科学通报, 24: 2587-2593
[58]  朱万泽, 吴永波, 薛建辉. 2006. 贡嘎山地区黄背栎的光合特性. 南京林业大学学报(自然科学版), 30: 25-28
[59]  朱燕华, 康宏樟, 刘春江. 2011. 植物叶片气孔性状变异的影响因素及研究方法. 应用生态学报, 22: 250-256
[60]  左闻韵, 贺金生, 韩梅, 等. 2005. 植物气孔对大气CO2浓度和温度升高的反应-基于在CO2浓度和温度梯度中生长的10种植物的观测. 生态学报, 25: 565-574
[61]  Beerling D J, Royer D L. 2002. Reading CO2 signal from fossil stomata. New Phytol, 153: 387-397
[62]  Beerling D J, Chaloner W G. 2011. The impact of atmospheric CO2 and temperature change on stomatal density: Observations from Quercus robur lammas leaves. Ann Bot-London, 71: 231-235
[63]  Beerling D J, Osborne C P, Chaloner W G. 2001. Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the late palaeozoicera. Nature, 410: 352-354
[64]  Beerling D J. 1999. Stomatal density and index: Theory and application. In: Jones T P, ed. Fossil plant and spore: Modern techniques. London: Geological Society. 251-254
[65]  Tim J B, Taylor S F, Lawren S. 2010. Viewing leaf structure and evolution from a hydraulic perspective. Funct Plant Biol, 37, 488-498
[66]  Kouwenberg C L R, Kürschner W M, Kürschner W M. 2007. Stomatal frequency change over altitudinal gradients: Prospects for paleoaltimetry. Rev Mineral Geochem, 66: 215-241
[67]  van Hoof T B, Kürschner W M, Wagner F, et al. 2006. Stomatal index response of Quercus robur and Quercus petraea to the anthropogenic atmospheric CO2 increase. Plant Ecol, 183: 237-243
[68]  Víctor R, Brent E, Wei S, et al. 2009. Williams drought-induced hydraulic limitations constrain leaf gas exchange recovery after precipitation pulses in the C3 woody legume, Prosopis velutina. New Phytol, 181: 672-682
[69]  Woodward F I. 1987. Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature, 327: 617-618
[70]  Xie S P, Sun B N, Yan D F, et al. 2006. Leaf cuticular characters of Ginkgo and implications for paleo-atmospheric CO2 in the Jurassic. Prog Nat Sci, 16: 258-263
[71]  Xu Z Z, Zhou G S, Wang Y H. 2007. Combined effects of elevated CO2 and soil drought on carbon and nitrogen allocation of the desert shrub Caragana intermedia. Plant Soil, 301: 87-97

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133