全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

青藏高原北缘酒泉盆地青西凹陷白垩系湖相热水沉积原生白云岩

, PP. 591-604

Keywords: 原生含铁白云岩,热水沉积,断陷湖泊,白垩系,酒泉盆地

Full-Text   Cite this paper   Add to My Lib

Abstract:

?通过岩相学、组构学和地球化学的综合研究,详细描述和论证了一种独特而罕见的中生代断陷湖盆条件下,碱性热卤水结晶沉淀的纹层状泥晶原生含铁白云岩.主要造岩矿物为泥晶结构的含铁白云石,此类白云石多呈0.1~1mm厚的纹层,并与钠长石、方沸石、重晶石和地开石等多种热液矿物呈两元或多元互纹层产出.岩石地球化学结果显示:富含Sb,Ba,Sr,Mn和V等热水沉积标型元素,LREE相对富集,具典型的负Eu异常稀土配分模式,氧同位素δ18OPDB介于-5.89‰~-14.15‰,平均-9.69‰,87Sr/86Sr比值介于0.711648~0.719546,平均0.714718,反映沉积环境为受基底断裂控制的稳定、封闭和缺氧的深湖底低洼热卤水池,热流体为下渗湖水与幔源岩浆水混合形成的富含Ca2+,Mg2+和Fe2+等多种离子的碱性热卤水,受岩浆热能驱动流、重力驱动流及压实驱动流共同作用,突破上覆沉积物和湖泊水体的静水负荷压力发生沸腾爆炸,将喷流口上覆先期的纹层状泥晶含铁白云岩震碎,形成“水爆角砾岩”;在距喷流口较远的低洼、安静的热卤水池中,热液则快速结晶化学沉淀出纹层状泥晶原生含铁白云岩.该套特殊岩石的研究一定程度上将有助于推动湖相碳酸盐岩和白云岩成因研究,特别是为我国中、新生代同类盆地湖相白云岩研究提供新的范例和研究思路.

References

[1]  苏建平, 吴保祥, 雷怀彦, 等. 2002. 甘肃酒西白垩纪盆地沉积构成及盆地演化动力学分析. 沉积学报, 20: 568-573
[2]  涂光炽. 1988. 一些金矿床地质问题的讨论. 地质找矿论丛, 3: 1-8
[3]  王晓丰, 张志诚, 郭召杰, 等. 2004. 酒西盆地南缘旱峡早白垩世火山岩地球化学特征及其构造意义. 高校地质学报, 10: 570-577
[4]  王英华, 周书欣, 张秀莲. 1993. 中国湖相碳酸盐岩. 徐州: 中国矿业大学出版社. 1-147
[5]  文华国. 2008. 酒泉盆地青西凹陷湖相“白烟型”热水沉积岩地质地球化学特征及成因. 博士学位论文. 成都: 成都理工大学. 1-165
[6]  文华国, 郑荣才, 范铭涛, 等. 2010. 酒泉盆地青西凹陷下沟组湖相热水沉积岩流体包裹体特征. 地质学报, 84: 106-115
[7]  肖荣阁, 杨忠芳, 杨卫东, 等. 1994. 热水成矿作用. 地学前缘, 1: 140-147
[8]  严德天, 陈代钊, 王清晨, 等. 2009. 扬子地区奥陶系-志留系界限附近地球化学研究. 中国科学D辑: 地球科学, 39: 285-299
[9]  杨经绥, 孟繁聪, 张建新, 等. 2001. 重新认识阿尔金断裂东段红柳峡火山岩的时代及构造意义. 中国科学D辑: 地球科学, 31(增刊): 83-89
[10]  伊海生, 林金辉, 赵西西, 等. 2008. 西藏高原沱沱河盆地渐新世-中新世湖相碳酸盐岩稀土元素地球化学特征与正铕异常成因初探. 沉积学报, 26: 1-10
[11]  应凤祥. 1993. 我国相陆碎屑岩中的自生矿物. 中国油气储层研究论文集. 北京: 石油工业出版社. 1-19
[12]  翟裕生. 2004. 地球系统科学与成矿学研究. 地学前缘, 11: 1-10
[13]  张文正, 杨华, 解丽琴, 等. 2010. 湖底热水活动及其对优质烃源岩发育的影响—以鄂尔多斯盆地长7烃源岩为例. 石油勘探与开发, 37: 424-429
[14]  张晓宝. 1993. 准噶尔盆地南缘东部中二叠统芦草沟组黑色页岩中白云岩夹层的成因探讨. 沉积学报, 11: 132-138
[15]  张学丰, 胡文瑄, 张军涛. 2006. 白云岩成因相关问题及主要形成模式, 地质科技情报, 25: 32-40
[16]  郑荣才, 王成善, 朱利东, 等. 2003. 酒西盆地首例湖相“白烟型”喷流岩—热水沉积白云岩的发现及其意义, 成都理工大学学报: 自然科学版, 30: 1-8
[17]  郑荣才, 文华国, 范铭涛, 等. 2006. 酒西盆地下沟组湖相白烟型喷流岩岩石学特征. 岩石学报, 22: 3027-3038
[18]  周传明, 张俊明, 李国祥, 等. 1997. 云南永善肖滩早寒武世早期碳氧同位素记录. 地质科学, 32: 201-211
[19]  周永章, 何俊国, 杨志军, 等. 2004. 华南热水沉积硅质岩建造及其成矿效应. 地学前缘, 11: 373-377
[20]  朱东亚, 金之钧, 胡文瑄. 2009. 塔中地区热液改造型白云岩储层. 石油学报, 30: 698-703
[21]  Al-Aasm I S, Lonnee J S, Clarke J. 2002. Multiple fluid flow events and the formation of saddle dolomite: Case studies from the Middle Devonian of the Western Canada Sedimentary basin. Mar Pet Geol, 19: 209-217
[22]  Miroshnichenko M L. 2004. Thermophilic microbial communities of deep-sea hydrothermal vents. Microbiology, 73: 1-13
[23]  Murray R W. 1994. Chemical criteria to identify the depositional environment of chert: General principles and application. Sediment Geol, 90: 213-232
[24]  Nader F H ,Garcia D, Parra T, et al. 2009. Reactive geochemical transport modeling of hydrothermal dolomite fronts: The case of Marjaba dolomite front (Jurassic, Lebanon). J Geochem Explor, 101: 74
[25]  Nader F H, Swennen R, Ellam R. 2004. Reflux stratabound dolostone and hydrothermal volcanism-associated dolostone: A two-stage dolomitization model (Jurassic, Lebanon). Sedimentology, 51: 339-360
[26]  Le Guerroué E, Allen P A, Crozzi A. 2006. Chemostratigraphic and sedimentological framework of the largest negative carbon isotopic excursion in Earth History: The Neoproterozoic Shuram formation (Nafun Group, Oman). Precambrian Res, 146: 68-92
[27]  Liou J G. 1971. Analcime equilibria. Lithos, 4: 389-402
[28]  López-Horgue M A, Iriarte E, Schr?der S, et al. 2010. Structurally controlled hydrothermal dolomites in Albian carbonates of the Ason Valley, Basque cantabrian basin, Northern Spain. Mar Pet Geol, 27: 1069-1092
[29]  Machel H G, Lonnee J. 2002. Hydrothermal dolomite-a product of poor definition and imagination. Sediment Geol, 152: 163-171
[30]  Marchig V, Gundlach H, Moller P. 1985. Some geological indicators for discrimination between Digenetic and Hydrothermal Metalliferous Sediments. Mar Geol, 50: 241-256
[31]  Palmer M R, Elderfield H. 1985. Sr isotope composition of sea water over the past 75 Myr. Nature, 314: 526-528
[32]  Qing H, Mountjoy E W. 1994. Formation of coarsely crystalline, hydrothermal dolomite reservoirs in the Presqu’ile Barrier, Western Canada sedimentary basin. AAPG Bull, 78: 55-77
[33]  Qing H, Mountjoy E W. 1992. Large-scale fluid flow in the middle devonian Presqu’ile barrier, Western Canada sedimentary basin. Geology, 20: 903-906
[34]  Rosenthal Y, Lam P, Boyle E A, et al. 1995. Authigenic cadmium enrichments in suboxic sediments: Precipitation and post depositional mobility. Earth Planet Sci Lett. 132: 99-111
[35]  Roy P D, Kloss W S. 2007. REE geochemistry of the recent playa sediments from the Thar desert, India: An implication to Playa Sediment Provenance. Chem Erde-Geochem, 67: 55-68
[36]  Sass E. 1965. Dolomite-calcite relationships in seawater: Theoretical considerations and preliminary experimental results. J Sediment Petrol, 35: 339-347
[37]  Spencer R J. 1987. Origin of Ca-Cl brines in devonian formations, Western Canada sedimentary basin. Appl Geochem, 2: 373-384
[38]  Sugitani K, Yamashita F, Nagaoka T, et al. 2006. Geochemistry and sedimentary petrology of Archean clastic sedimentary rocks at Mt.Goldsworthy, Pilbara Craton, Western Australia: Evidence for the early evolution of continental crust and hydrothermal alteration. Precambrian Res, 147: 124-147
[39]  Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Sunders A D, Norry M J. eds. Mamatism in the Ocean Basin. London Geol Soc Spec Publ, 42: 313-345
[40]  Tarasov V G, Gebruk A V, Mironov A N, et al. 2005. Deep-sea and shallow-water hydrothermal vent communities: Two different phenomena. Chem Geol, 224: 5-39
[41]  Taylor R, Mclenan S M. 1985. The continental crust: Its composition and evolution. London: Blackwell. 57-72
[42]  Tribovillard N, Algeo T J, Lyons T, et al. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem Geol, 232: 12-32
[43]  Tritlla J, Cardellach E. 2001. Origin of vein hydrothermal carbonates in triassic limestones of the Espadan Ranges Iberian Chain, E Spain. Chem Geol, 172: 291-305
[44]  Veizer J, Ala D, Azmy K B, et al. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol, 161: 59-88
[45]  Wright D T. 1999. The role of sulphate reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia. Sediment Geol, 126: 147-157
[46]  Wright W R, Johnson A W, Sheltonb K L, et a1. 2000. Fluid migration and rock interactions during dolomitisation of the Dinantian Irish Midlands and Dublin Basin. J Geochem Explor, 69-70: 159-164
[47]  陈代钊. 2008. 构造-热液白云岩化作用与白云岩储层. 石油与天然气地质, 29: 614-622
[48]  范铭涛, 杨麟科, 方国玉, 等. 2003. 青西凹陷下白垩统湖相喷流岩成因探讨及其意义. 沉积学报, 21: 560-564
[49]  高翔, 王平康, 李秋英, 等. 2010. 松科1井嫩江组湖相含铁白云石的准确定名和矿物学特征. 岩石矿物学杂志, 29: 213-218
[50]  黄志诚, 杨守业, 陈智娜. 1996. 原生白云石与交代白云石的矿物学对比研究. 中国科学D辑: 地球科学, 26: 544-550
[51]  贾三石, 王恩德, 付建飞, 等. 2011. 冀东-辽西主要金矿矿集区地质特征的差异性与成矿作用的统一性探析. 地质学报, 85: 1493-1505
[52]  李朝阳, 王京彬, 肖荣阁, 等. 1993. 滇西地区陆相热水沉积成矿作用. 铀矿地质, 9: 14-22
[53]  李奋其, 王成善, 王崇孝. 2006. 酒泉早白垩世盆地群构造特征和成因. 地质学报, 80: 181-191
[54]  李红, 柳益群, 梁浩, 等. 2012. 三塘湖盆地二叠系陆相热水沉积方沸石岩特征及成因分析. 沉积学报, 30: 205-218
[55]  刘传联, 赵泉鸿, 汪品先. 2001. 湖相碳酸盐氧碳同位素的相关性与生油古湖泊类型. 地球化学, 30: 363-367
[56]  刘春莲, Franz T F, 白雁, 等. 2004. 三水盆地古近系湖相沉积岩的氧、碳同位素地球化学记录及其环境意义. 沉积学报, 22: 36-39
[57]  柳益群, 焦鑫, 李红, 等. 2011. 新疆三塘湖跃进沟二叠系地幔热液喷流型原生白云岩. 中国科学: 地球科学, 41: 1862-1871
[58]  彭楠, 旷红伟, 柳永清. 2011. 北祁连-酒西地区早白垩世盆地沉积特征与古地理演化. 地学前缘, 18: 77-87
[59]  彭润民, 翟裕生, 王志刚, 等. 2004. 内蒙古狼山炭窑口热水喷流沉积矿床钾质“双峰式”火山岩层的发现及其示踪意义. 中国科学D辑: 地球科学, 34: 1135-1141
[60]  任战利, 刘池阳, 张小会, 等. 2000. 酒泉盆地群热演化史恢复及其对比研究. 地球物理学报, 43: 635-645
[61]  Al-Aasm I S. 2003. Origin and characterization of hydrothermal dolomite in the Western Canada Sedimentary basin. J Geochem Explor, 78-79: 9-15
[62]  Al-Aasm I S, Vernon M. 2007. Waulsortian-like mounds of the Mississippian Pekisko formation, Northwestern Alberta: Petrographic and chemical attributes. Mar Petr Geol, 24: 616-631
[63]  Blendinger W. 2004, Sea level changes versus hydrothermal diagenesis: Origin of Triassic carbonate platform cycles in the dolomites, Italy. Sediment Geol, 169: 21-28
[64]  Boni M, Iannacea A, Bechstadtb T, et al. 2000. Hydrothermal dolomites in SW Sardinia (Italy) and Cantabria (NW Spain): Evidence for late to post-Variscan widespread Fluid-flow Events. J Geochem Explor, 69-70: 225-228
[65]  Bonnemaison M. 1986. Les “filons de quartz aurifère”: Un casparticulier de shear zone aurifère. Chron Rech Minière, 54: 55-66
[66]  Brigaud B, Durlet C, Deconinck J, et al. 2009. The origin and timing of multiphase cementation in carbonates: Impact of regional scale geodynamic events on the Middle Jurassic Limestones Diagenesis (Paris Basin, France). Sediment Geol, 222: 161-180
[67]  Brown A C. 1993. Sediment-host of stratiform copper deposits. Geosci Can, 19: 125-141
[68]  Caline B, Sudrie M, López-Horgue M A, et al. 2006. Fault-related hydrothermal dolomites of cretaceous platform carbonates outcropping in the Karrantza area (North Spain): Lessons learned for a better characterisation of subsurface dolomite reservoirs. In: 17th International Sedimentological Congress, Fukuoka, Japan
[69]  Do Campo M, del P C, Jiménez-Millán J, et al. 2007. Clay mineral assemblages and analcime formation in a Palaeogene fluvial-lacustrine sequence (Maíz Gordo Formation Palaeogen) from northwestern Argentina. Sediment Geol, 201: 56-74
[70]  Chen D Z, Qing H R, Yang C. 2004. Multistage hydrothermal dolomites in the Middle Devonian(Givetian) carbonates from Guilin area, South China. Sedimentary, 561: 1029-1051
[71]  Davies G R, Smith Jr L B. 2006. Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bull, 90: 1641-1690
[72]  Deckker P D, Last W M. 1988. Modern dolomite deposition in continental, Saline Lakes, Western Victoria, Australia. Geology, 16: 29-32
[73]  Dehler C M, Elrick M, Bloch J D, et al. 2005. High-resolution δ13C Stratigraphy of Chuar Group (ca 770-742Ma) Grand Canyon: Implications for Mid- Neoproterozoic climate change. Geol Soci Am Bull, 117: 32-45
[74]  Faure G. 1986. Principles of Isotope Geology. 2nd ed. New York: John Wiley and Sons. 160-230
[75]  Folk R L, Land L S. 1975. Mg/Ca ratio and salinity; two controls over crystallization of dolomite. AAPG Bull, 59: 60-68
[76]  Folk R L. 1993. SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks. J Sediment Petrol, 63: 990-999
[77]  Frimmel H E. 2009. Trace element distribution in Neoproterzoic carbonates as palaeoenvironmental indicator. Chem Geol, 258: 338-353
[78]  Gasparrinia M, Bechstadta T, Bonib M. 2006. Massive Hydrothermal Dolomites in the Southwestern Cantabrian Zone (Spain) and their relation to the Late Variscan evolution. Mar Petrol Geol, 23: 543-568
[79]  Ghobarkar H, Sch?f O. 1990. Effect of temperature on hydrothermal synthesis of analcime and Visite. Mat Sci Eng, B60: 163-167
[80]  Humphrisi S E, Bach W. 2005. On the Sr isotope and REE compositions of anhydrites from the TAG seafloor hydrothermal system. Geochim Cosmochim Acta, 69: 1511-1525
[81]  Kimura H, Watanabe Y. 2001. Ocean anoxia at the Precambrian-Cambrian boundary. Geology, 29: 995-998
[82]  Klinkhammer G P, Elderfield H, Edmond J M, et al. 1994. Geochemical implications of rare Earth element patterns in hydrothermal fluids from Mid-ocean ridges. Geochim Cosmochim Acta, 58: 5105-5113
[83]  Lavoie D, Chi G, Alpert B P, et al. 2005. Hydrothermal dolomitization in the lower Ordovician romaine formation of the Anticosti Basin: Significance for hydrocarbon exploration. B Can Petrol Geol, 53: 454-471

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133