全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中国致密砂岩大气田的稳定碳氢同位素组成特征

, PP. 563-578

Keywords: 致密砂岩,大气田,碳氢同位素,煤成气,中国

Full-Text   Cite this paper   Add to My Lib

Abstract:

?至2010年底中国共发现15个致密砂岩大气田,分布在鄂尔多斯盆地、四川盆地和塔里木盆地.这些气田2010年气产量和总储量分别为222.5×108和28657×108m3,分别占全国的23.5%和37.3%,是中国产量和储量的主要组成部分.根据81个气样分析,中国致密砂岩大气田稳定碳氢同位素组成主要特征为:(1)综合δ13C1-δ13C2-δ13C3图版,δ13C1-C1/C2+3图版和δ13C1-δ13C2回归线分析,中国致密砂岩大气田的天然气为来自含煤岩系的煤成气;(2)原生烷烃气随分子中碳数顺增,碳氢同位素值随之变重,即δ13C1<δ13C2<δ13C3<δ13C4和δ2H1<δ2H2<δ2H3;(3)δ13C2-δ13C1,δ13C3-δ13C1和δ2H2-δ2H1,δ2H3-δ2H1随Ro(%)和C1/C1~4值渐增而减小;(4)碳氢同位素倒转成因有7种,中国致密砂岩大气田碳氢同位素倒转主要是多期成藏充注所致.

References

[1]  戴金星. 1980. 我国煤系含气性的初步研究. 石油学报, 1: 27-37
[2]  戴金星. 1990. 我国有机烷烃气的氢同位素的若干特征. 石油勘探与开发, 5: 27-32
[3]  戴金星. 1992. 各类烷烃气的鉴别. 中国科学B辑, 22: 183-195
[4]  戴金星, 戚厚发. 1989. 我国煤成烃气的δ13C-Ro关系. 科学通报, 34: 690-692
[5]  戴金星, 裴锡古, 戚厚发. 1992. 中国天然气地质学(卷一). 北京: 石油工业出版社. 35-60
[6]  戴金星, 钟宁宁, 刘德汉, 等. 2000. 中国煤成大中型气田地质基础和主控因素. 北京: 石油工业出版社. 180-182
[7]  戴金星, 李剑, 侯路. 2005. 鄂尔多斯盆地氦同位素的特征. 高校地质学报, 11: 473-478
[8]  戴金星, 倪云燕, 黄士鹏, 等. 2014. 煤成气研究对中国天然气工业发展的重要意义. 天然气地球科学, 25: 1-22
[9]  丁超, 陈刚, 郭兰, 等. 2011. 鄂尔多斯盆地东北部上古生界油气成藏期次. 地质科技情报, 30: 69-73
[10]  耿玉臣. 1993. 孝泉构造侏罗系“次生气藏”的形成条件和富集规律. 石油实验地质, 15: 262-271
[11]  刘宝和. 2011. 中国油气田开发志(卷13-1). 北京: 石油工业出版社. 753-768
[12]  刘建章, 陈红汉, 李剑, 等. 2005. 运用流体包裹体确定鄂尔多斯盆地上古生界油气成藏期次和时期. 地质科技情报, 24: 60-66
[13]  刘全有, 戴金星, 李剑, 等. 2007. 塔里木盆地天然气氢同位素地球化学与对热成熟度和沉积环境的指示意义. 中国科学D辑: 地球科学, 37: 1599-1608
[14]  刘新社, 周立发, 候云东. 2007. 运用流体包裹体研究鄂尔多斯盆地上古生界天然气成藏. 石油学报, 28: 37-42
[15]  李贤庆, 李剑, 王康东, 等. 2012. 苏里格低渗砂岩大气田天然气充注、运移及成藏特征. 地质科技情报, 31: 55-62
[16]  童晓光, 郭彬程, 李建忠, 等. 2012. 中美致密砂岩气成藏分布异同点比较研究与意义. 中国工程科学, 14: 9-15
[17]  王先彬. 1989. 稀有气体同位素地球化学和宇宙化学. 北京: 科学出版社. 112
[18]  许化政. 1991. 东濮凹陷致密砂岩气藏特征的研究. 石油学报, 12: 1-8
[19]  徐永昌, 沈平, 刘文汇, 等. 1998. 天然气中稀有气体地球化学. 北京: 科学出版社. 17-25
[20]  夏新宇. 2000. 碳酸盐岩生烃与长庆气田气源. 北京: 石油工业出版社. 2000
[21]  薛会, 王毅, 毛小平, 等. 2009. 鄂尔多斯盆地北部上古生界天然气成藏期次—以杭锦旗探区为例. 天然气工业, 29: 9-12
[22]  杨俊杰, 裴锡古. 1996. 中国天然气地质学(卷四: 鄂尔多斯盆地). 北京: 石油工业出版社. 107-120
[23]  杨涛, 张国生, 梁坤, 等. 2012. 全球致密气勘探开发进展及中国发展趋势预测. 中国工程科学, 14: 64-68
[24]  杨华, 刘新社, 杨勇. 2012. 鄂尔多斯盆地致密气勘探开发形势与未来发展展望. 中国工程科学, 14: 40-48
[25]  翟光明主编. 1989. 中国石油地质志(卷10). 北京: 石油工业出版社. 121-122
[26]  张士亚. 1994. 鄂尔多斯盆地天然气气源及勘探方向. 天然气工业, 14: 1-4
[27]  张金亮, 常象春. 2002. 深盆气地质理论及应用. 北京: 地质出版社
[28]  曾大乾, 张世民, 卢立泽. 2003. 低渗透致密砂岩气藏裂缝类型及特征. 石油学报, 24: 36-39
[29]  邹才能, 陶士振, 袁选俊, 等. 2009. “连续型”油气藏及其在全球的重要性: 成藏、分布与评价. 石油勘探与开发, 36: 669-682
[30]  张文忠, 郭彦如, 汤达祯, 等. 2009. 苏里格气田上古生界储层流体包裹体特征及成藏期次划分. 石油学报, 30: 685-691
[31]  中国国家能源局. 2011. 中华人民共和国石油与天然气行业标准(SY/T6832-2011). 北京: 石油工业出版社
[32]  张国生, 赵文智, 杨涛, 等. 2012. 我国致密砂岩气资源潜力、分布与未来发展地位. 中国工程科学, 14: 87-93
[33]  朱忠谦, 杨学君, 赵力彬, 等. 2011. 陆相湖盆致密砂岩储层裂缝形成机理研究—以塔里木盆地A气田巴什基奇克组为例. 见: 国际非常规油气勘探开发(青岛)大会论文集. 北京: 地质出版社. 147-158
[34]  Baihly J, Grant D, Fan L, et al. 2007. Horizontal wells in tight gas sands: A method for risk management to maximize success. SPE Annual Technical Conference and Exhibition, Anaheim, California, U.S.A.
[35]  Barker J F, Pollock S J. 1984. The geochemistry and origin of natural gases in southern Ontario. Bull Canadian Petrol Geol, 32: 313-326
[36]  Boreham C J, Edwards D S. 2008. Abundance and carbon isotopic composition of neo-pentane in Australian natural gases. Org Geochem, 39: 550-566
[37]  Burruss R C, Laughrey C D. 2010. Carbon and hydrogen isotopic reversals in deep basin gas: Evidence for limits to the stability of hydrocarbons. Org Geochem, 41: 1285-1296
[38]  Chen J F, Xu Y C, Huang D F. 2000. Geochemistry characteristics and origin of natural gas in Tarim basin, China. AAPG Bull, 84: 591-606
[39]  Coplen T B, Brand W A, Gehre M, et al. 2006. New Guidelines for d13C measurements. Anal Chem, 78: 2439-2441
[40]  Des Marais D J, Donchin J H, Nehring N L, et al. 1981. Molecular carbon isotope evidence for the origin of geothermal hydrocarbon. Nature, 292: 826-828
[41]  Dai J X, Song Y, Dai C S, et al. 2000. Conditions Governing the Formation of Abiogenic Gas and Gas Pools in Eastern China. Beijing and New York: Science Press. 65-66
[42]  Dai J X, Xia X Y, Qin S F, et al. 2004. Origins of partially reversed alkane δ13C values for biogenic gases in China. Org Geochem, 35: 405-411
[43]  Dai J X, Li J, Luo X, et al. 2005a. Stable carbon isotope compositions and source rock geochemistry of the giant gas accumulations in the Ordos Basin, China. Org Geochem, 36: 1617-1635
[44]  Dai J X, Yang S F, Chen H L, et al. 2005b. Geochemistry and occurrence of abiogenic gas accumulations in the Chinese sedimentary basins. Org Geochem, 36: 1664-1688
[45]  Dai J X, Ni Y Y, Wu X Q. 2012a. Tight gas in China and its significance in exploration and exploitation. Petrol Explor Dev, 39: 274-284
[46]  Patience R. 2003. Where did all the coal gas go? Org Geochem, 34: 375-387
[47]  Qin S F. 2012. Carbon isotopic composition of water-soluble gases and its geological significance in the Sichuan Basin. Petrol Explor Dev, 39: 335-342
[48]  Rooney M A, Claypool G E, Chung H M, et al. 1995. Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons. Chem Geol, 126: 219-232
[49]  Stahl W J. 1977. Carbon and nitrogen isotopes in hydrocarbon research and exploration. Chem Geol, 20: 121-149
[50]  Stahl W J. 1979. Geochemische Daten Nordwestdeutscher Oberkarbon, Zechtein-und Buntsandsteingase. Erdl?l Kohle Erdgal Petrochem, 32: 65-70
[51]  Spencer C W. 1985. Geologic aspects of tight gas reservoirs in the Rocky Mountain region. J Petrol Geol, 37: 1308-1314
[52]  Surdam R C. 1997. A new paradigm for gas exploration in anomalously pressured “tight gas sands” in the Rocky Mountain Laramide basins. In: Seals, traps, and the petroleum system. AAPG Memoir, 67: 283-298
[53]  U.S. Energy Information Adiministration. 2012. Annual energy outlook 2012. U.S. Energy Information Adiministration, Washington
[54]  Whiticar M J. 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol, 161: 291-314
[55]  Yang H, Fu J H, Wei X S, et al. 2008. Sulige field in the Ordos Basin: Geological Setting, field discovery and tight gas reservoirs. Mar Pet Geol, 25: 387-400
[56]  Zhang S C, Mi J K, Liu L P, et al. 2009. Geological features and formation of coal-formed tight sandstone gas pools in China: Cases from Upper Paleozoic gas pools, Ordos Basin (in Chinese). Petrol Explor Dev, 36: 320-330
[57]  Zhao W Z, Wang H J, Xu C C, et al. 2010. Reservoir-forming mechanism and enrichment conditions of extensive Xujiahe Formation gas reservoirs, central Sichuan Basin (in Chinese). Petrol Explor Dev, 37: 146-157
[58]  Zou C N, Jia J H, Tao S Z, et al. 2011. Analysis of Reservoir Forming Conditions and Prediction of Continuous Tight Gas Reservoirs for the Deep Jurassic in the Eastern Kuqa Depression, Tarim Basin. Acta Geol Sin, 85: 1173-1186
[59]  Dai J X, Ni Y Y, Zou C N. 2012b. Stable carbon and hydrogen isotopes of natural gases sourced from the Xujiahe Formation in the Sichuan Basin, China. Org Geochem, 43: 103-111
[60]  Dai J X, Xia X Y, Li Z S, et al. 2012c. Inter-laboratory calibration of natural gas round robins for δ2H and δ13C using off-line and on-line techniques. Chem Geol, 310-311: 49-55
[61]  Erdman J G, Morris D A. 1974. Geochemical correlation of petroleum. AAPG Bull, 58: 2326-2377
[62]  Elkins L E. 1978. The technology and economics of gas recovery from tight sands. SPE Production Technology Symposium
[63]  Fuex A A. 1977. The use of stable carbon isotopes in hydrocarbon exploration. J Geochem Explor, 7: 155-188
[64]  Holditch S A. 2006. Tight gas sands. J Petrol Technol, 58: 86-93
[65]  Hosg?rmez H. 2007. Origin of the natural gas seep of Cirali (Chimera), Turkey: Site of the first Olympic fire. J Asian Earth Sci, 30: 131-141
[66]  Hao F, Guo T L, Zhu Y M, et al. 2008. Evidence for multiple stages of oil cracking and thermochemical sulfate reduction in the Puguang gas field, Sichuan Basin, China. AAPG Bull, 92: 611-637
[67]  Jenden P D, Kaplan I R, Poreda R, et al. 1988. Origin of nitrogen-rich natural gases in the California Great Valley: Evidence from helium, carbon and nitrogen isotope ratios. Geochim Cosmochim Acta, 52: 851-861
[68]  Jenden P D, Kaplan I R, Hilton D R, et al. 1993. Abiogenic hydrocarbons and mantle helium in oil and gas fields. The future of energy gases. US Geol Surv Professional Paper. 31-56
[69]  James A T. 1990. Correlation of reservoired gases using the carbon isotopic compositions of wet gas components. AAPG Bull, 74: 1441-1458
[70]  Kinnaman F S, Valentine D L, Tyler S C. 2007. Carbon and hydrogen isotope fractionation associated with the aerobic microbial oxidation of methane, ethane, propane and butane. Geochim Cosmochim Aeta, 71: 271-283
[71]  Law B E. 1984. Relationships of source rocks, thermal maturity and overpressuring to gas generation and occurrence in low permeability Upper Cretaceous and lower Tertiary rocks, Greater Green River basin, Wyoming, Colorado, and Utah. In: Woodward J, Meissner F F, Clayton J L, eds. Hydrocarbon Source Rocks of the Greater Rocky Mountain Region. Rocky Mountain Association of Geologists. 469-490
[72]  Law B E. 1992. Thermal maturity patterns of Cretaceous and Tertiary rock, San Juan Basin, Colorado and New Mexico. Geol Soc Am Bull, 104: 192-207
[73]  Laughrey C D, Baldassare F J. 1998. Geochemistry and origin of some natural gases in the plateau province, central Appalachian basin, Pennsylvania and Ohio. AAPG Bull, 82: 317-335
[74]  Masters J A. 1984. Lower Cretaceous oil and gas in Western Canada: Pressured “Elimworth-case study of a deep basin gas field”. AAPG Memoir, 38: 1-33
[75]  Ni Y Y, Ma Q S, Ellis G F, et al. 2011. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems. Geochim Cosmochim Acta, 75: 2696-2707
[76]  Poreda R J, Jenden P D, Kaplan E R. 1986. Mantle helium in Sacramento basin natural gas wells. Geochim Cosmochim Acta, 65: 3847-2853
[77]  Prinzhofer A, Mello M R, Takaki T. 2000. Geochemical characterization of natural gas: A physical multivariable approach and its applications in maturity and migration estimates. AAPG Bull, 84: 1152-1172

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133