全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

FY3B-MWRI中国区域雪深反演算法改进

, PP. 531-547

Keywords: FY3B-MWRI,雪深(SD),中国区域,半经验算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

?基于2002~2009年全国753个国家基本气象站观测的地面雪深和温度资料,以及同期的高级微波扫描辐射计(AdvancedMicrowaveScanningRadiometerforEOS,AMSR-E)亮温数据,利用不同频率亮温对雪深的敏感性差异,建立了中国区域雪深半经验统计反演算法.经2006年地面台站观测雪深验证,其反演均方根误差为5.6cm.具体反演思路如下:根据全国1km网格土地利用覆盖度数据,结合中国区域的下垫面微波辐射特征,划分成森林、农田、草地和裸地四种主要地物类型;首先建立这四种主要地物类型相对较纯像元下的雪深反演算法,然后利用线性混合像元分解技术,建立微波像元下高精度的雪深反演算法.将本算法分别应用于风云三号B星搭载的微波成像仪(Fengyun-3B/McirwoaveRadiationImagery,FY3B-MWRI)和AMSR-E数据,进行了2010~2011年冬季雪盖制图,与相应时段的MODIS日积雪产品(MYD10C1)相比,尽管两者数据源有所不同,本算法估算雪盖的精度均达到84%以上.此外,利用本算法和FY3B-MWRI数据在北半球进行了雪当量估算测试,与AMSR-E标准雪当量产品进行了比较,发现二者结果较为一致.但在中国地区,AMSR-E雪当量值明显高于FY3B-MWRI估算值,这与目前已有AMSR-E雪当量产品的验证结果较为一致,FY3B-MWRI雪深估算值与站点观测值更为吻合.该算法已被作为国家卫星气象中心FY3B-MWRI雪深产品的业务化算法.

References

[1]  曹梅盛, 李培基, Robinson D A, 等. 1993. 中国西部积雪SSMR微波遥感的评价与初步应用. 环境遥感, 8: 260-269
[2]  李晓静, 刘玉洁, 朱小祥, 等. 2007. 利用SSM/I数据判识我国及周边地区雪盖, 应用气象学报, 18: 12-20
[3]  孙知文. 2007. 风云三号微波成像仪(FY-3 MWRI)积雪参数反演算法研究与系统开发. 硕士学位论文. 北京: 北京师范大学
[4]  Chang A T C, Foster J L, Hall D K. 1987. Nimbus-7 SMMR derived global snow cover parameters. Ann Glaciol, 9: 39-44
[5]  Chang A T C, Gloersen P, Schmugge T J, et al. 1976. Microwave emission from snow and glacier ice. J Glaciol, 16: 23-29
[6]  Chang S, Shi J C, Jiang L M, et al. 2009. Improved snow depth retrieval algorithm in China area using passive microwave remote sensing data. In: Proceedings of 2009 IEEE International Geoscience and Remote Sensing Symposium. Ⅱ: 614-617
[7]  Che T, Li X, Jin R, et al. 2008. Snow depth derived from passive microwave remote-sensing data in China. Ann Glaciol, 49: 145-154
[8]  Derksen C, Toose P, Rees A, et al. 2010. Development of a tundra-specific snow water equivalent retrieval algorithm for satellite passive microwave data. Remote Sens Environ, 114: 1699-1709
[9]  Derksen C, Walker A, Goodison B. 2005. Evaluation of passive microwave snow water equivalent retrievals across the boreal forest/tundra of western Canada. Remote Sens Environ, 96: 315-327
[10]  Derksen C. 2008. The contribution of AMSR-E 18.7 and 10.7 GHz measurements to improved boreal forest snow water equivalent retrievals. Remote Sens Environ, 112: 2701-2710
[11]  Foster J L, Chang A T C, Hall D K. 1997. Comparison of snow mass estimates from a prototype passive microwave snow algorithm, a revised algorithm and a snow depth climatology. Remote Sens Environ, 62: 132-142
[12]  Foster J L, Hall D K, Chang A T C, et al. 1984. An overview of passive microwave snow research and results. Rev Geophys, 22: 195-208
[13]  Goita K, Walker A, Goodison B. 2003. Algorithm development for the estimation of snow water equivalent in the boreal forest using passive microwave data. Int J Remote Sens, 24: 1097-1102
[14]  Grody N C, Basist A N. 1996. Global identification of snowcover using SSM/I measurements. IEEE Trans Geosci Remote Sensing, 34: 237-249
[15]  Grody N C. 1991. Classification of snow cover and precipitation using the special sensor microwave imager. J Geophys Res, 96: 7423-7435
[16]  Guo Y, Shi J, Du J, et al. 2011. A topographic correction technique for satellite radiometer measurement with high resolution DEM. Int J Remote Sens, 3: 8899-8913
[17]  Hallikainen M T, Jolma P. 1992. Comparison of algorithms for retrieval of snow water equivalent from Nimbus-7 SMMR data in Finland. IEEE Trans Geosci Remote Sensing, 30: 124-131
[18]  Hofer R, M?tzler C. 1980. Investigation of snow parameters by radiometry in the 3-to 60-mm wavelength region. J Geophys Res, 85: 453-460
[19]  Kelly R E J. 2009. The AMSR-E snow depth algorithm: Description and initial results. J Remote Sens Soc Jpn, 29: 307-317
[20]  Koenig L S, Forster R R. 2004. Evaluation of passive microwave snow water equivalent algorithms in the depth hoar-dominated snowpack of the Kuparuk River Watershed, Alaska, USA. Remote Sens Environ, 93: 511-527
[21]  Liston E G. 2004. Representing subgrid snow cover heterogeneities in regional and global models. J Clim, 17: 1381-1397
[22]  Rott H, Sturm K. 1991. Microwave signature measurements of Antarctic and Alpine snow. Proceedings of the 11th EARSeL Symposium. Boulogne-Billancourt: European Association of Remote Sensing Laboratories. 140-151
[23]  Savoie M H, Armstrong R L, Brodzik M J, et al. 2009. Atmospheric corrections for improved satellite passive microwave snow cover retrievals over the Tibet Plateau. Remote Sens Environ, 113: 2661-2669
[24]  Shuman C, Alley R. 1993. Spatial and temporal characterization of hoar formation in central Greenland using SSM/I brightness temperatures. Geophys Res Lett, 2: 2643-2646
[25]  Singh P R, Gan T Y. 2000. Retrieval of snow water equivalent using passive microwave brightness temperature data. Remote Sens Environ, 74: 275-286
[26]  Tait A B. 1998. Estimation of snow water equivalent using passive microwave radiation data. Remote Sens Environ, 64: 286-291
[27]  Tedesco M, Wang J R. 2006. Atmospheric correction of AMSR-E brightness temperatures for dry snow cover mapping. IEEE Trans Geosci Remote Sens Lett, 3: 320-324
[28]  Ulaby F T, Moore R K, Fung A. 1981. Microwave remote sensing: Active and passive, vol. 1-Microwave remote sensing fundamentals and radiometry. Reading, Massachusetts: Addison-Wesley-Longman. 456
[29]  Wang J R, Tedesco M. 2007. Identification of atmospheric influences on the estimation of snow water equivalent from AMSR-E measurements. Remote Sens Environ, 111: 398-408
[30]  Wang P, Jiang L, Zhang L, et al. 2010. Impact of terrain topography on retrieval of snow water equivalence using passive microwave remote sensing. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium. 1757-1760
[31]  Wu T W, Wu G X. 2004. An empirical formula to compute snow cover fraction in GCMs. Adv Atmos Sci, 21: 529-535
[32]  Yang H, Weng F Z, Lv L Q, et al. 2011a. The FengYun-3 microwave radiation imager on-orbit verification. IEEE Trans Geosci Remote Sens, 49: 4552-4560
[33]  Yang H, Lv L Q, Xu H X, et al. 2011b. Evaluation of FY3B-MWRI instrument on-orbit calibration accuracy. In: Proceedings of 2011 IEEE International Geoscience and Remote Sensing Symposium. 2252-2254

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133