全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非弹性应变恢复法三维地应力测量——汶川地震科学钻孔中的应用

, PP. 510-518

Keywords: 汶川Ms8.0地震,岩芯非弹性应变恢复,非弹性应变恢复柔量,三维地应力,科学钻孔

Full-Text   Cite this paper   Add to My Lib

Abstract:

?随着地球动力学和深部能源开发利用等研究工作的不断深入,深部应力状态的研究越来越重要,但目前尚没有即经济又简便完善的深部三维地应力测量方法.基于岩芯的非弹性应变恢复法是近年来发展起来的深部三维应力测量方法.汶川5·12地震后,中国大陆首次将该方法应用于科学钻孔的地应力测量.本文详细介绍了这一方法现场测量岩芯非弹性恢复应变的基本流程,并对此法测量的岩芯首次开展了岩石非弹性应变恢复柔量的实验研究,将现场非弹性应变测量与室内非弹性应变恢复柔量实验相结合,确定汶川地震科学钻一号孔(WFSD-1)1173m处最大主应力方向为NW64°,实测得到岩石的剪切与体积模式非弹性应变恢复柔量的比值为2.9,计算得到最大、中间和最小主应力分别为43,28和25MPa.结合龙门山地区其他方法的地应力测量结果,表明龙门山断裂带从NE到SW现今最大主应力作用方向表现为由EW→NEE→NWW的变化规律,龙门山断裂带现今地应力作用方向的分段性特征与5·12汶川地震时龙门山断裂带西南段逆冲为主,东北段走滑为主的运动特点相吻合,研究结果对于认识汶川地震的动力学机制具有一定参考价值.

References

[1]  安其美, 丁立丰, 王海忠, 等. 2004. 龙门山断裂带的性质与活动性研究. 大地测量与地球动力学, 24: 115-119
[2]  陈群策, 丰成君, 孟文, 等. 2012. 5·12汶川地震后龙门山断裂带东北段现今地应力测量结果分析. 地球物理学报, 55: 3923-3932
[3]  陈颙. 2009. 汶川地震是由水库蓄水引起的吗? 中国科学D辑: 地球科学, 39: 257-259
[4]  陈颙. 1988. 地壳岩石的力学性能——理论基础与实验方法. 北京: 地震出版社. 1-279
[5]  崔效锋, 胡幸平, 余春泉, 等. 2011. 汶川地震序列震源机制解研究. 北京大学学报(自然科学版), 47: 1063-1072
[6]  杜义, 谢富仁, 张效亮, 等. 2009. 汶川Ms8.0级地震断层滑动机制研究. 地球物理学报, 52: 464-473
[7]  丰成君, 陈群策, 谭成轩, 等. 2013. 汶川Ms8.0地震对龙门山断裂带附近地应力环境影响初探——以北川、江油地区为例. 地震学报, 35: 137-150
[8]  胡幸平, 俞春泉, 陶开, 等. 2008. 利用P波初动资料求解汶川地震及其强余震震源机制解. 地球物理学报, 51: 1711-1718
[9]  林为人. 2008. 基于岩芯非弹性应变恢复量测定的深孔三维地应力测试方法. 岩石力学与工程学报, 27: 2387-2394
[10]  刘健, 熊探宇, 赵越, 等. 2012. 龙门山活动断裂带运动学特征及其构造意义. 吉林大学学报(地球科学版), 42(增刊): 320-330
[11]  马宗晋, 蒋铭. 1987. 中国的强震期和强震幕. 中国地震, 3: 47-51
[12]  彭华, 马秀敏, 姜景捷. 2011. 差应变法地应力测量——以汶川地震断裂带科学钻探WFSD-1钻孔为例. 地质力学学报, 17: 249-261
[13]  石耀霖, 曹建玲. 2010. 库仑应力计算及应用过程中若干问题的讨论——以汶川地震为例. 地球物理学报, 53: 102-110
[14]  王连捷, 孙东生, 林为人, 等. 2012. 地应力测量的非弹性应变恢复法及应用实例. 地球物理学报, 55: 1674-1681
[15]  尹祥础. 1985. 固体力学. 北京: 地震出版社. 1-512
[16]  谢富仁, 崔效锋, 赵建涛, 等. 2004. 中国大陆及邻区现代构造应力场分区. 地球物理学报, 47: 654-662
[17]  耶格J C, 库克N G W. 1981. 岩石力学基础. 中国科学院工程力学研究所(译). 北京: 地震出版社. 382-397
[18]  张国民. 1987. 我国大陆强震活动的韵律性特征. 地震地质, 9: 27-38
[19]  张贝, 石耀霖. 2010. 紫坪铺水库对附近断层稳定性影响的探讨. 中国科学院研究生院报, 27: 755-762
[20]  郑勇, 马宏省, 吕坚, 等. 2009. 汶川地震强余震(Ms35.6)的震源机制解及其与发震构造的关系. 中国科学D辑: 地球科学, 39: 413-426
[21]  Bohnhoff M, Baisch S, HarjesH P. 2004. Fault mechanisms of induced seismicity at the super deep German Continental Deep Drilling Program (KTB) borehole and their relation to fault structure and stress field. J Geophy Res, 109: B02309, doi: 10.1029/2003JB002528
[22]  Brereton N R, Chroston P N, Evans C J. 1995. Pore pressure as an explanation of complex anelastic strain recovery results. Rock Mech Rock Eng, 28: 59-66
[23]  Brown E T, Hoek E. 1978. Trends in relationships between measured rock in situ stresses and depth. Int J Rock Mech Min Sci, 15: 211-215
[24]  Byrne T B, Lin W, Tsutsumi A, et al. 2009. Anelastic strain recovery reveals extension across SW Japan subduction zone. Geophys Res Lett, 36: L23310, doi: 10.1029/2009GL040749
[25]  Chang C, McNeill L C, Moore J C, et al. 2010. In situ stress state in the Nankai accretionary wedge estimated from borehole wall failures. Geochem Geophys Geosyst, 11: Q0AD04, doi: 10.1029/2010GC003261
[26]  Chester F M, Mori J J, Toczko S, et al. 2012. Japan Trench Fast Drilling Project (JFAST). IODP Prel Rept, 343/343T, doi: 10.2204/iodp. pr.343343T.2012
[27]  Dey T N, Kranz R L. 1988. State of stress and relationship of mechanical properties to hydrothermal alteration at Valles Caldera Core Hole 1, New Mexico. J Geophy Res, 93: 6108-6112
[28]  Engelder T. 1984. The time-dependent strain relaxation of Algerie granite. Int J Rock Mech Min Sci, 21: 63-73
[29]  Hardebeck J L. 2004. Stress triggering and earthquake probability estimates. J Geophys Res, 109: B04310, doi: 10.1029/2003JB002437
[30]  Hickman S, Zoback M. 2004. Stress orientations and magnitudes in the SAFOD pilot hole. Geophy Res Lett, 31: L15S12, doi: 10.1029/ 2004GL020043
[31]  Hung J H, Ma K F, Wang C Y, et al. 2009. Subsurface structure, physical properties, fault zone characteristics and stress state in the scientific drill holes of Taiwan Chelungpu Fault Drilling Project. Tectonophysics, 466: 307-321
[32]  Li H, Wang H, Xu Z, et al. 2012. Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1). Tectonophysics, 584: 23-42
[33]  Lin W, Kwasniewski M, Imamura T, et al. 2006. Determination of three-dimensional in situ stresses from anelastic strain recovery measurement of cores at great depth. Tectonophysics, 426: 221-238
[34]  Lin W, Yeh E, Ito H, et al. 2007a. Preliminary results of stress measurement by using drill cores of TCDP Hole-A: An application of anelastic strain recovery method to three-dimensional in situ stress determination. Ter Atmos Ocea Sci, 18: 379-393
[35]  Lin W, Yeh E C, Ito H, et al. 2007b. Current stress state and principal stress rotations in the vicinity of the Chelungpu fault induced by the 1999 Chi-Chi, Taiwan, Earthquake. Geophys Res Lett, 34: L16307, doi: 10.1029/2007GL030515
[36]  Lin W, Doan M L, Moore J C, et al. 2010. Present-day principal horizontal stress orientations in the Kumano forearc basin of the southwest Japan subduction zone determined from IODP NanTroSEIZE drilling Site C0009. Geophys Res Lett, 37: L13303, doi: 10.1029/2010GL043158
[37]  Lin W, Saito S, Yamamoto Y, et al. 2011. Principal horizontal stress orientations prior to the 2011 Mw9.0 Tohoku-Oki, Japan, earthquake in its source area. Geophy Res Lett, 38: L00G10, doi: 10.1029/2011GL049097
[38]  Matsuki K. 1991. Three-dimensional in situ stress measurement with anelastic strain recovery of a rock core. In: Wittke W, ed. Proc 7th Int Congr Rock Mech. Aachen. 557-560
[39]  Matsuki K, Takeuchi K. 1993. Three-dimensional in situ stress determination by anelastic strain recovery of a rock core. Int J Rock Mech Min Sci, 30: 1019-1022
[40]  Matsuki K. 2008. Anelastic strain recovery compliance of rocks and its application to in situ stress measurement. Int J Rock Mech Min Sci, 45: 952-965
[41]  Perreau P J, Heugas O, Santarelli F J. 1989. Tests of ASR, DSCA, and core discing analyses to evaluate in situ stresses. SPE paper 17960, SPE Middle East Oil Technical Conference and Exhibition Manama, Bahrain. 325-336
[42]  Stein R S. 1999. The role of stress transfer in earthquake occurrence. Nature, 402: 605-609
[43]  Sun D S, Wang L J, Wang H C, et al. 2013. Analysis of the Wenchuan Ms8.0 Earthquake Co-seismic stress and displacement change by using the finite element method. Acta Geol Sin, 87: 1120-1128
[44]  Voight B. 1968. Determination of the virgin state of stress in the vicinity of a borehole from measurements of a partial anelastic strain tensor in drill cores. Felsmechanik und Ingenieurgeologie, 6: 201-215
[45]  Wu H Y, Ma K F, Zoback M, et al. 2007. Stress orientations of Taiwan Chelungpu-Fault Drilling Project (TCDP) hole-A as observed from geophysical logs. Geophy Res Lett, 34: L01303, doi: 10.1029/2006GL028050
[46]  Wolter K E, Berckhemer H. 1989. Time dependent strain recovery of cores from the KTB-Deep drill hole. Rock Mech Rock Eng, 22: 273-287
[47]  Warpinski N R, Teufel L W. 1989. In situ stresses in low permeability, nonmarine rocks. J Petrol Technol, 41: 405-414
[48]  Wu M L, Zhang Y Q, Liao C T, et al. 2009. Preliminary results of In-situ stress measurements along the Longmenshan Fault Zone after the Wenchuan Ms8.0 Eratherquare. ACTA Geol Sin, 83: 746-753
[49]  Yamashita F, Fukuyama E, Omura K. 2004. Estimation of fault strength: Reconstruction of stress before the 1995 Kobe earthquake. Science, 306: 261-263
[50]  Zang A, Stephansson O. 2010. Stress Field of the Earth''s Crust. London: Springer. 115-193

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133