全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

藏北聂荣微陆块泛非-早古生代构造热事件:年代学与地球化学制约

, PP. 414-428

Keywords: 安多片麻岩,锆石U-Pb定年,地球化学,聂荣微陆块,青藏高原

Full-Text   Cite this paper   Add to My Lib

Abstract:

?为更好认识聂荣微陆块上的泛非-早古生代构造热事件并约束其构造演化,本文报道了聂荣微陆块中安多片麻岩锆石LA-ICP-MSU-Pb定年结果及其地球化学特征.安多片麻岩出露于藏北安多县城以南约30km,4件片麻岩的野外产状、矿物组成、结构特征以及全岩地球化学特征均表明片麻岩的原岩为中酸性侵入岩;片麻岩中锆石微量元素示踪、成因分析研究表明锆石具有岩浆锆石的典型特征,锆石206Pb/238U谐和年龄在505~517Ma,为中-晚寒武世,代表了片麻岩原岩的时代.样品具显著高硅,富碱的特征,碱度率AR=1.73~3.7,分异指数DI=70.78~90.28,岩石铝饱和指数在1.02~1.05,FeO*/MgO介于2.63~4.50,10000×Ga/Al在2.12~2.41,P2O5和Al2O3含量随SiO2增加而降低,Th,Y与Rb含量具有非常好的正相关关系,片麻岩类原岩的成因类型属于分异的亚碱性过铝质I型花岗岩.结合区域资料,安多片麻岩原岩形成的大地构造背景与碰撞造山过程密切相关,初步认为微陆块上发育的中晚寒武纪岩浆事件可能是泛非造山作用结束之后,沿冈瓦纳超大陆边缘安第斯型造山作用的产物.

References

[1]  陈福坤, 李秋立, 王秀丽, 等. 2005. 云南特提斯带保山-腾冲地块早古生代岩浆岩. 地质学报, 26(增刊): 93
[2]  程立人, 张以春, 张予杰. 2005. 藏北申扎地区早奥陶世地层的发现及意义. 地层学杂志, 29: 38-41
[3]  丛峰, 林仕良, 李再会, 等. 2009. 滇西腾冲地块片麻状花岗岩的锆石U-Pb年龄. 地质学报, 83: 651-658
[4]  刘琦胜, 叶培盛, 吴中海. 2012. 滇西高黎贡山南段奥陶纪花岗岩SHRIMP锆石U-Pb测年和地球化学特征. 地质通报, 31: 250-257
[5]  刘文灿, 梁定益, 王克友, 等. 2002. 藏南康马地区奥陶系的发现及地质意义. 地学前缘, 9: 247-248
[6]  刘文灿, 万晓樵, 梁定益, 等. 2004. 江孜县幅、亚东县幅地质调查新成果及主要进展. 地质通报, 23: 444-450
[7]  潘桂棠, 陈智梁, 李兴振, 等. 1997. 东特提斯地质构造形成演化. 北京: 地质出版社, 121-128
[8]  潘桂棠, 肖庆辉, 陆松年, 等. 2009. 中国大地构造单元划分. 中国地质, 36: 1-28
[9]  邱检生, 肖娥, 胡建, 等. 2008. 福建北东沿海高分异I型花岗岩的成因: 锆石U-Pb年代学、地球化学和Nd-Hf同位素制约. 岩石学报, 24: 2468-2484
[10]  时超、李荣社, 何世平, 等. 2010. 藏南亚东地区片麻状含石榴子石黑云花岗闪长岩LA-ICP-MS锆石U-Pb测年及其地质意义. 地质通报, 29: 1745-1753
[11]  宋彪, 张玉海, 万渝生, 等. 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论. 地质论评, 48(增刊): 26-30
[12]  宋述光, 季建清, 魏春景, 等. 2007. 滇西北怒江早古生代片麻状花岗岩的确定及其构造意义. 科学通报, 52: 927-930
[13]  王明, 李才, 解超明, 等. 2012. 聂荣微陆块花岗片麻岩锆石LA-ICP-MS U-Pb定年—新元古代基底岩石的发现及其意义. 岩石学报, 28: 4101-4108
[14]  Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. London: Geol Soc Spec Pub, 42: 528-548
[15]  Turner S, Arnaud N, Liu J, et al. 1996. Post-collision, shoshonitic volcanism on the Tibetan plateau: Implica-tions for convective thinning of the lithosphere and the source of ocean island basalts. J Petrol, 37: 45-71
[16]  Valdiya K S, Gupta V J. 1972. A contribution to the geology of the geology of Northeastern Kumaun, with special reference to the Hercynian gap in Tethys Himalaya. Him Geol, 2: 1-33
[17]  Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol, 95: 407-419
[18]  Wolf M B, London D. 1994. Apatite dissolution into peraluminous haplogranitic melts: An experimental study of solubilities and mechanism. Geochim Cosmochim Acta, 58: 4127-4145
[19]  Wu F Y, Jahn B M, Wilder S A, et al. 2003. Highly fractionated I-type granites in NE China (I): Geochronology and petrogenesis. Lithos, 66: 241-273
[20]  Xu R H, Sch?rer U, Allégre C J. 1985. Magmatism and metamorphism in the Lhasa block (Tibet): A geochronological study. J Geol, 93: 41-57
[21]  Yuan H L, Gao S, Liu X M, et al. 2004. Accurate U-Pb age and trace elment deteminations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards Geoanlytical Res, 11: 357-370
[22]  Zhu D C, Zhao Z D, Niu Y L, et al. 2012. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin. Chem Geol, 328: 290-308
[23]  Zhu D C, Zhao Z D, Niu Y L, et al. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet Sci Lett, 301: 241-255
[24]  丁林. 2003. 西藏雅鲁藏布江缝合带古新世深水沉积和放射虫动物群的发现及对前陆盆地演化的制约. 中国科学D辑: 地球科学, 33: 47-58
[25]  董昕, 张泽明, 王金丽, 等. 2009. 青藏高原拉萨地体南部林芝岩群的物质来源与形成时代: 岩石学与锆石U-Pb年代学. 岩石学报, 25: 1678-1694
[26]  董永胜, 李才, 陈辉, 等. 2011. 西藏东南部察隅地区德玛拉岩群的同位素年代学研究及其意义. 岩石学报, 27: 1198-1208
[27]  胡培远, 李才, 苏犁, 等. 2010. 青藏高原羌塘中部蜈蚣山花岗片麻岩锆石U-Pb定年-泛非与印支事件的年代学记录. 中国地质, 37: 1050-1061
[28]  计文化, 陈守建, 赵振明, 等. 2009. 冈底斯构造带申扎一带寒武纪火山岩的发现及其地质意义. 地质通报, 28: 1350-1354
[29]  解超明, 李才, 苏犁, 等. 2010. 藏北安多地区花岗片麻岩锆石LA-ICP-MS U-Pb定年. 地质通报, 29: 1737-1744
[30]  李才, 吴彦旺, 王明, 等. 2010. 青藏高原泛非-早古生代造山事件研究重大进展—冈底斯地区寒武系及泛非造山不整合的发现. 地质通报, 29: 1733-1736
[31]  李才, 谢尧武, 沙绍礼, 等. 2008. 藏东八宿地区泛非期花岗岩锆石SHRIMP U-Pb定年. 地质通报, 27: 64-68
[32]  李才. 2008. 青藏高原龙木错-双湖-澜沧江板块缝合带研究二十年. 地质论评, (5): 105-119
[33]  李献华, 李武显, 李正祥. 2007. 再论南岭燕山早期花岗岩的成因类型与构造意义. 科学通报, 52: 981-992
[34]  梁银平, 朱杰, 次邛, 等. 2010. 青藏高原冈底斯带中部朱诺地区林子宗群火山岩锆石U-Pb年龄和地球化学特征. 地球科学-中国地质大学学报, 35: 211-213
[35]  刘敏, 赵志丹, 管琪, 等. 2011. 西藏聂荣微陆块早侏罗世中期花岗岩及其包体的岩浆混合成因: 锆石LA-ICP-MS U-Pb定年和Hf同位素证据. 岩石学报, 27: 1931-1937
[36]  刘敏, 朱弟成, 赵志丹, 等. 2010. 藏北聂荣地区早侏罗世末期的岩浆混合作用及构造意义. 岩石学报, 26: 3117-3130
[37]  王晓先, 张进江, 杨雄英, 等. 2011. 藏南吉隆地区早古生代大喜马拉雅片麻岩锆石SHRIMP U-Pb年龄、Hf同位素特征及其地质意义. 地学前缘, 18: 127-139
[38]  夏斌, 徐力峰, 张玉泉, 等. 2008. 西藏南部康马花岗岩锆石SHRIMP U-Pb年龄. 矿物岩石, 28: 72-76
[39]  许志琴, 杨经绥, 梁凤华, 等. 2005. 喜马拉雅地体的泛非-早古生代造山事件年龄记录. 岩石学报, 21: 1-12
[40]  薛怀民, 刘福来, 孟繁聪. 2007. 苏鲁造山带胶南区段片麻岩原岩的成因: 地球化学及Nd同位素证据. 岩石学报, 23: 3239-3248
[41]  杨启军, 徐义刚, 黄小龙, 等. 2009. 滇西腾冲-梁河地区花岗岩的年代学、地球化学及其构造意义. 岩石学报, 25: 1092-1104
[42]  张旗, 潘国强, 李承东, 等. 2007. 花岗岩构造环境问题: 关于花岗岩研究的思考之三. 岩石学报, 23: 2683-2698
[43]  张晓冉, 史仁灯, 黄启帅, 等. 2010. 青藏高原安多高压基性麻粒岩的发现及其地质意义. 科学通报, 55: 2702-2711
[44]  张修政, 董永胜, 解超明, 等. 2010. 安多地区高压麻粒岩的发现及其意义. 岩石学报, 26: 2106-2112
[45]  张泽明, 王金丽, 沈昆, 等. 2008a. 环东冈瓦纳大陆周缘的古生代造山作用: 东喜马拉雅构造结南迦巴瓦岩群岩石学和年代学证据. 岩石学报, 24: 1627-1637
[46]  张泽明, 王金丽, 赵国春, 等. 2008b. 喜马拉雅造山带东构造结南迦巴瓦岩群地质年代学和前寒武纪构造演化. 岩石学报, 24: 1477-1487
[47]  赵志丹, 莫宣学, Nomand S, 等. 2006. 青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义. 岩石学报, 22: 787-794
[48]  赵志丹, 莫宣学, 张双全, 等. 2001. 藏中部乌郁盆地碰撞后岩浆作用-特提斯洋壳俯冲再循环的证据. 中国科学D辑: 地球科学, 31: 20-26
[49]  周志广, 刘文灿, 梁定益, 等. 2004. 藏南康马奥陶系及其底砾岩的发现并初论喜马拉雅沉积盖层与统一变质基底的关系. 地质通报, 23: 655-663
[50]  朱同兴, 王安华, 邹光富, 等. 2003. 喜马拉雅地区沉积盖层底砾岩的新发现. 地质通报, 22: 367-368
[51]  Argles T W, Prin C I, Foster G L, et al. 1992. New garnets for old? Cautionary tales from young mountain belts. Earth Planet Sci Lett, 172: 301-309
[52]  Belousova E A, Griffin W L, Suzanne Y O, et al. 2002. Lgneous zircon: Trace element composition as an indicator of source rock type. Contrib Mineral Petrol, 143: 602-622
[53]  Boynton W V. 1984. Cosmochemistry of the rare earth elements: Meteorites studies. Dev Geochem, 2: 63-114
[54]  Catlos E J, Harrison T N, Manning C E, et al. 2000. Records of the evolution of the Himalayan in silu Th-Pb ion mincoprobe dating of monazite: Eastern Nepal and western Garhwal. J Asian Earth Sci, 20: 459-479
[55]  Cawood P A, Buchan C. 2007. Linking accretionary oroggenesis with supercontinent assembly. Earth-Sci Rev, 82: 217-256
[56]  Cawood P A, Johnson M R W, Nemchin A A. 2007. Early Palaeozoic orogenesis along the Indian margin of Gondwana; Tectonic response to Gondwana assembly. Earth Planet Sci Lett, 255: 70-84
[57]  Chappell B W. 1999. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites. Lithos, 46: 535-551
[58]  Chen F, Siebel W, Guo J H. 2004. Zircon age evidence for Early Paleozoic magmatism in the Baoshan-Tengchong block of the Tethyan Yunnan, China. Geochim Cosmochim Acta, A547
[59]  Condie K C. 2001. Continent grouping during formation of Rodinia at 1.35-0.9 Ga. Gondwana Res, 1: 5-16
[60]  DeCelles P G, Gehrels G E, Quade J, et al. 2000. Tectonic implications of U-Pb zircon ages of the Himalayan Orogenic Belt in Nepal. Science, 288: 497-499
[61]  Garzanti E, Casnedi R, Jadoul F. 1986. Sedimentary evidence of a Cambro-Ordovician orogenic event in the northwestern Himalaya. Sediment Geol, 48: 237-265
[62]  Gehrels G E, Deceles P G, Martin A. 2003. Initiation of the Himalaya norogen as an Early Paleozoic thin-skinned thrust belt. GSA Today, 13: 4-9
[63]  Gehrels G, Kapp P, DeCelles P, et al. 2011. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogeny. Tectonics, 30, doi:10.1029/2011TC002868
[64]  Guynn J H, Kapp P, Gehrels G, et al. 2012. U-Pb geochronology of basement rocks in central Tibet and paleogeographic implications. J Asian Earth Sci, 43: 23-50
[65]  Guynn J H, Kapp P, Pullen A, et al. 2006. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet. Geology, 34: 505-508
[66]  Hoskin P W, Ireland T R. 2000. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28: 627-630
[67]  Kumar R, Shah A N, Bingham D K. 1978. Positive evidence of a Precambrian tectonic phase in central Nepal, Himalaya. J Geol Soc India, 19: 519-522
[68]  Liu S, Hu R Z, Gao S, et al. 2009. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on the age and origin of Early Palaeozoic I-type granite from the Tengchong-Baoshan Block, Western Yunnan Province, SW China. J Asian Earth Sci, 36: 168-182
[69]  Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. GSA Bull, 101: 635-643
[70]  Middlemost E A K. 1989. Iron oxidation ratios, norms and the classification of volcanic rocks. Chem Geol, 77: 19-26
[71]  Miller C, Schuster R, Klotzli U, et al. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. J Petrol, 40: 1399-1424
[72]  Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of iutites. Nature, 299: 715-717
[73]  Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of glranitic rocks. J Petrol, 25: 956-983
[74]  Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and elements. Lithos, 22: 247-263
[75]  Shaw D M. 1972. The origin of the Apsley Gneiss, Ontario. Can J Earth Sci, 9: 18-35
[76]  Stocklin J. 1980. Geology of the Nepal and its regional frame. J Geol Soc India, 137: 1-34

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133