全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

生物大灭绝研究三十年

, PP. 377-404

Keywords: 生物大灭绝,系统和演化古生物学,精时地层学,大灾变环境,温度剧变

Full-Text   Cite this paper   Add to My Lib

Abstract:

?历次生物大灭绝除具有若干共同特征外,各自更存在许多特点,重视和阐释产生各大灭绝的环境差异与不同板块、相区、剖面中不同门类、类群和属种应对大灭绝的适应差异,是深化理解大灭绝的重要内容.化石采集、系统分类和精时地层研究是探索生物大灭绝的根基和关键;从生物多样性的丧失和生态系的变革这两方面来揭示大灭绝后的生物世界;从地球系统学的视角来探索大灭绝发生的复杂机制,重视多种外因(包括古气候,如古温度)的剧变对生命演化的影响.气候变化既可导致生物大灭绝,也可能有利于生物大辐射,笼统地说“由全球变暖或变冷引发大灭绝”是不合适的.就古温度而言,聚焦研究大灾变前的温度,温度剧变的幅度、历程和频率等四方面尤为重要.与其他学科的交叉研究是探索同期环境背景和生物演变的综合途径.大灭绝带给物种的选择压力是通过其自身适应和应对策略体现的,所以,在探索生物与环境的协同演化的同时,也要探讨生物门类之间和物种本身对环境剧变的适应演化.

References

[1]  陈宜瑜, 陈泮勤, 葛全胜, 等. 2002. 全球变化研究进展与展望. 地学前缘, 9: 11-18
[2]  陈祚伶, 丁仲礼. 2011. 古新世-始新世极热事件研究进展. 第四纪研究, 31: 937-950
[3]  方宗杰. 2004a. 华南二叠纪末大灭绝后双壳类的宏演化阶段. 见: 戎嘉余, 方宗杰, 主编. 生物大灭绝与复苏—来自华南古生代和三叠纪的证据. 合肥: 中国科学技术大学出版社. 647-700
[4]  方宗杰. 2004b. 二叠纪-三叠纪之交生物大灭绝的型式、全球生态系统的巨变及其起因. 见: 戎嘉余, 方宗杰, 主编. 生物大灭绝与复苏—来自华南古生代和三叠纪的证据. 合肥: 中国科学技术大学出版社. 785-928
[5]  顾兆炎, 许冰, 刘强, 等. 2004. 华南泥盆纪弗拉期-法门期之交碳酸盐沉积物同位素记录. 见: 戎嘉余, 方宗杰, 主编. 生物大灭绝与复苏—来自华南古生代和三叠纪的证据. 合肥: 中国科学技术大学出版社. 457-472
[6]  郝诒纯, 郭宪璞, 叶留生, 等. 2001. 塔里木盆地西南地区海相白垩系-第三系界线. 北京: 地质出版社. 108
[7]  何心一, 陈建强. 2004. 扬子区奥陶纪晚期四射珊瑚的大灭绝. 见: 戎嘉余, 方宗杰, 主编. 生物大灭绝与复苏—来自华南古生代和三叠纪的证据. 合肥: 中国科学技术大学出版社. 153-168
[8]  侯鸿飞, 王士涛. 1985. 中国泥盆纪古地理. 古生物学报, 24: 186-197
[9]  侯鸿飞, 周怀玲, 刘建波. 2011. 湖南台地泥盆纪末绝灭事件后的微生物沉积. 地质学报, (1): 145-156
[10]  黄冰. 2012. 浅谈稀疏标准化方法(Rarefaction)及其在群落多样性研究中的应用. 古生物学报, 51: 56-64
[11]  黄浩. 2011. 基于居群变异的(蜓)种鉴定—以Eopolydiexodina为例. 中国科学: 地球科学, 41: 1416-1423
[12]  戎嘉余, 詹仁斌. 2006. 论大灭绝后的幸存类型、复活效应与避难所. 地学前缘, 13: 187-198
[13]  戎嘉余, 詹仁斌, 许红根, 等. 2010. 华夏古陆于奥陶-志留纪之交的扩展证据和机制探索. 中国科学: 地球科学, 40: 1-17
[14]  沈文杰, 张华, 孙永革, 等. 2012. 二叠纪-三叠纪界线大火燃烧的地层记录: 研究进展回顾与评述. 地球科学进展, 27: 613-623
[15]  苏文博, 李志明, 史晓颖, 等. 2006. 华南五峰组-龙马溪组与华北下马岭组的钾质斑脱岩及黑色岩系—两个地史转折期板块构造运动的沉积响应. 地学前缘, 13: 82-95
[16]  孙东立, 沈树忠, 2004. 华南二叠纪-三叠纪腕足动物多样性模式. 见: 戎嘉余, 方宗杰, 主编. 生物大灭绝与复苏—来自华南古生代和三叠纪的证据. 合肥: 中国科学技术大学出版社. 543-569
[17]  童金南. 1997. 华南古生代末大灭绝后的生态系复苏. 地球科学, 22: 373-376
[18]  汪品先. 2003. 我国的地球系统科学研究向何处去. 地球科学进展, 18: 837-851
[19]  王成源, Ziegler W. 2004. 华南桂林地区泥盆纪弗拉期-法门期之交牙形刺的集群灭绝及其后的复苏. 见: 戎嘉余, 方宗杰, 主编. 生物大灭绝与复苏—来自华南古生代和三叠纪的证据. 合肥: 中国科学技术大学出版社. 281-316
[20]  王成源. 2004. 华南二叠系-三叠系与泥盆系弗拉阶-法门阶界线层牙形刺的灭绝与复苏的对比研究. 见: 戎嘉余, 方宗杰, 主编. 生物大灭绝与复苏—来自华南古生代和三叠纪的证据. 合肥: 中国科学技术大学出版社. 731-748
[21]  王尚启. 2004. 晚泥盆世介形类豆石目的大灭绝. 见: 戎嘉余, 方宗杰, 主编. 生物大灭绝与复苏—来自华南古生代和三叠纪的证据. 合肥: 中国科学技术大学出版社. 357-366
[22]  王向东, 沈建伟. 2004. 华南晚泥盆世-早石炭世生物礁的灭绝和复苏. 见: 戎嘉余, 方宗杰, 主编. 生物大灭绝与复苏—来自华南古生代和三叠纪的证据. 合肥: 中国科学技术大学出版社. 367-380
[23]  王雪. 1995. 滇东曲靖上志留统关底组若干腕足动物居群的生态特征. 古生物学报, 34: 742-754
[24]  王玉净, 罗辉. 2004. 华南晚泥盆世弗拉期-法门期大灭绝事件中放射虫动物群的兴衰. 见: 戎嘉余, 方宗杰, 主编. 生物大灭绝与复苏—来自华南古生代和三叠纪的证据. 合肥: 中国科学技术大学出版社. 381-408
[25]  王玥, 曹长群. 2004. 华南古生代-中生代之交生物大灭绝评述. 见: 戎嘉余, 方宗杰, 主编. 生物大灭绝与复苏—来自华南古生代和三叠纪的证据. 合肥: 中国科学技术大学出版社. 749-772
[26]  吴顺宝, 李庆, 王薇薇. 1988. 四川华蓥山二叠纪与三叠纪之交沉积特征及动物群变化. 现代地质, 2: 375-385
[27]  吴义布, 冯启, 龚一鸣. 2013. 菌藻类繁盛是泥盆纪珊瑚-层孔虫礁生态系消失的生物杀手. 中国科学: 地球科学, 43: 1156-1167
[28]  谢树成, 龚一鸣, 童金南, 等. 2006. 从古生物学到地球生物学的跨越. 科学通报, 51: 2327-2336
[29]  谢树成, 殷鸿福, 史晓颖, 等. 2011. 地球生物学: 生命与地球环境的相互作用和协同演化. 北京: 科学出版社. 345
[30]  徐桂荣. 1989. 二叠纪末类群绝灭的灾变性质. 中国科学技术协会学会工作部, 天地生综合研究进展—第三届全国天地生相互关系学术讨论会论文集. 北京: 中国科学技术出版社. 91-96
[31]  Becker L, Poreda R J, Hunt A G, et al. 2001. Impact event at the Permian-Triassic boundary: Evidence from extraterrestrial noble gases in fullerenes. Science, 291: 1530-1533
[32]  Beerling D. 2002. Palaeoclimatology: CO2 and the End-Triassic mass extinction. Nature, 415: 386-387
[33]  Benton M J. 1993. Reptilia. In: Benton M J, ed. The Fossil Record 2. London: Chapman and Hall. 681-715
[34]  Benton M J, Harper D A T. 2009. Introduction to Paleobiology and the Fossil Record. Oxford: Wiley-Blackwell. 592
[35]  Bergstr?m S M, Chen X, Gutierrez-Marco J C, et al. 2009. The new chronostratigraphic classification of the Ordovician System and its relations to major regional series and stages and to delta C-13 chemostratigraphy. Lethaia, 42: 97-107
[36]  Berner R A. 2002. Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. Proc Nat Acad Sci USA, 99: 4172-4177
[37]  Brenchley P J. 1984. Fossils and Climate. Wiley: Chichester. 368
[38]  Brenchley P J, Carden G A, Hints L, et al. 2003. High-resolution stable isotope stratigraphy of Upper Ordovician sequences: Constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation. Geol Soc Am Bull, 115: 89-104
[39]  Brenchley P J, Marshall J D, Carden G A F, et al. 1994. Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period. Geology, 22: 295-298
[40]  Briggs J C. 1998. Thinking of biology: Biotic replacements-extinction or clade interaction? BioScience, 48: 389-395
[41]  Brock T D, Freeze H. 1969. Thermus aquaticus gen. n. and sp. n. a nonsporulating extreme thermophile. J Bacteriol, 98: 289-297
[42]  Buggisch W. 1991. The global Frasnian-Famennian ""Kellwasser Event"". Geol Rund, 80: 49-72
[43]  Buggisch W, Joachimski M M. 2006. Carbon isotope stratigraphy of the Devonian of Central and Southern Europe. Paleogeogr Paleoclimatol Plaeoecol, 240: 68-88
[44]  Buggisch W, Wang X D, Alekseev A S et al. 2011. Carboniferous-Permian carbon isotope stratigraphy of succesions from China (Yangtze platform), USA (Kansas) and Russia (Moscow Basin and Urals). Paleogeogr Paleoclimatol Paleoecol, 301: 18-38
[45]  Calner M. 2005. A Late Silurian extinction event and anachronistic period. Geology, 33: 305-308
[46]  Calner M, Eriksson M E, Clarkson E N K, et al. 2008. An atypical intra-platform environment and biota from the Silurian of Gotland, Sweden. GFF, 130: 79-86
[47]  Calner M, Eriksson M J. 2006. Evidence for rapid environmental changes in low latitudes during the Late Silurian Lau Event: The Burgen-1 drillcore, Gotland, Sweden. Geol Mag, 143: 15-24
[48]  Cao C Q, Love G D, Hays L E, et al. 2009. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth Planet Sci Lett, 281: 188-201
[49]  Cao C Q, Yang Y C, Shen S Z, et al. 2010. Pattern of δ13Ccarb and implications for geological events during the Permian-Triassic transition in South China. Geol J, 45: 186-194
[50]  Caputo M V, Crowell J C. 1985. Migration of glacial centers across Gondwana during Paleozoic Era. Geol Soc Am Bull, 96: 1020-1036
[51]  Chen B, Joachimski M M, Sun Y D, et al. 2011. Carbon and conodont apatite oxygen isotope records of Guadalupian-Lopingian boundary sections: Climatic or sea-level signal? Paleogeogr Paleoclimatol Paleoecol, 311: 145-153
[52]  Chen B, Joachimski M M, Shen S Z, et al. 2013. Permian ice volume and palaeoclimate history: Oxygen isotope proxies revisited. Gondwana Res, 24: 77-89
[53]  Chen D Z, Qing H R, Li R W. 2005. The Late Devonian Frasnian-Famennian (F/F) biotic crisis: Insights from δ13Ccarb, δ13Corg and 87Sr/86Sr isotopic systematics. Earth Planet Sci Lett, 235: 151-166
[54]  Chen X, Melchin M J, Sheets H D, et al. 2005. Patterns and processes of latest Ordovician graptolite extinction and recovery based on data from south China. J Paleontol, 79: 842-861
[55]  Chen X, Rong J Y, Fan J X, et al. 2006. The Global boundary Stratotype Section and Point (GSSP) for the base of the Hirnantian Stage (the uppermost of the Ordovician System). Episodes, 29: 183-196
[56]  Chen Z Q, Benton M J. 2012. The timing and pattern of biotic recovery following the End-Permian mass extinction. Nat Geosci, 5: 375-383
[57]  Chen Z Q, Kaiho K, George A D. 2005. Early Triassic recovery of the brachiopod faunas from the End-Permian mass extinction: A global review. Paleogeogr Paleoclimatol Paleoecol, 224: 270-290
[58]  Chen Z Q, Tong J, Liao Z T, et al. 2010. Structural changes of marine communities over the Permian-Triassic transition: Ecologically assessing the End-Permian mass extinctiion and its aftermath. Glob Planet Change, 73: 123-140
[59]  Chenet A L, Fluteau F, Courtillot V, et al. 2008. Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: Results from a 1200-m-thick section in the Mahabaleshwar escarpment. J Geophys Res, 113, doi: 10.1029/2008JB005644
[60]  Chenet A L, Quidelleur X, Fluteau F, et al. 2007. 40K-40Ar dating of the Main Deccan large igneous province: Further evidence of KTB age and short duration. Earth Planet Sci Lett, 263: 1-15
[61]  Clark D L. 1983. Extinction of conodonts. J Paleontol, 57: 652-661
[62]  Cleveland D M, Nordt L C, Dworkin S I, et al. 2008. Pedogenic carbonate isotopes as evidence for extreme climatic events preceding the Triassic-Jurassic boundary: Implications for the biotic crisis? Geol Soc Am Bull, 120: 1408-1415
[63]  Copper P. 1977. Paleolatitudes in the Devonian of Brazil and the Frasnian-Famennian mass extinction. Paleogeogr Paleoclimatol Paleoecol, 21: 165-207
[64]  Copper P. 1986. Frasnian-Famennian mass extinction and cold-water oceans. Geology, 14: 835-839
[65]  Copper P. 1994. Ancient reef ecosystem expansion and collapse. Coral Reefs, 13: 3-11
[66]  Corliss J B, Dymond J, Gordon L I, et al. 1979. Submarine thermal springs on the Galapagos Rift. Science, 203: 1073-1083
[67]  Courtillot V, Fluteau F. 2010. Cretaceous extinctions: The volcanic hypothesis. Science, 328: 973-974
[68]  Courtillot V, Fluteau F. 2013. Flood basalt volcanism is the main cause of mass extinctions: Evidence and modelling. London: Abstracts of Volcanism, Impacts and Mass Extinctions. 31
[69]  Courtillot V, Kravchinsky V A, Quidelleur X, et al. 2010. Preliminary dating of the Viluy traps (Eastern Siberia): Eruption at the time of Late Devonian extinction events? Earth Planet Sci Lett, 300: 239-245
[70]  Cramer B D, Brett C E, Melchin M J, et al. 2011. Revised correlation of Silurian provincial series of North America with global and regional chronostratigraphic units and δ13Ccarb chemostratigraphy. Lethaia, 44: 185-202
[71]  Cuvier G. 1812. Recherches sur les ossements fossiles t.1: Discours préliminaire: Anatomie des catastrophes. 531
[72]  de Wit M J, Ghosh G J, de Villiers S, et al. 2002. Multiple organic carbon isotope reversals across the Permo-Triassic boundary of terrestrial Gondwana sequences: Clues to extinction patterns and delayed ecosystem recovery. J Geol, 110: 227-240
[73]  Diaz-Martinez E, Grahn Y. 2007. Early Silurian glaciation along the western margin of Gondwana (Peru, Bolivia and northern Argentina): Palaeogeographic and geodynamic setting. Paleogeogr Paleoclimatol Paleoecol, 245: 62-81
[74]  Dodd J R, Stanton R J J. 1990. Paleoecology, Concepts and Applications. 2nd ed. New York: John Wiley and Sons. 528
[75]  Donovan S K. 1989. Mass Extinctions: Processes and Evidence. New York: Columbia University Press. 266
[76]  Droser M L, Bottjer D J, Sheehan P M. 1997. Evaluating the ecological architecture of major events in the Phanerozoic history of marine invertebrate life. Geology, 25: 167-170
[77]  Huang B, Rong J Y, Harper D A T. 2013. A new survivor species of Dicoelosia (Brachiopoda) from Rhuddanian (Silurian) shallower-water biofacies in South China. J Paleontol, 87: 232-242
[78]  Payne J L, Clapham M E. 2012. End-Permian mass extinction in the oceans: An ancient analog for the Twenty-First Century? Annu Rev Earth Planet Sci, 40: 89–111
[79]  Payne J L, Lehrmann D J, Wei J Y, et al. 2004. Large perturbations if the carbon cycle during recovery from the end-Permian extinction. Science,305: 506–509
[80]  Phillips J. 1860. Life on Earth—Its Origin and Succession. Cambridge: MacMillan. 224
[81]  Pope K. 2002. Impact dust not the cause of the Cretaceous-Tertiary mass extinction. Geology, 30: 99–102
[82]  Racki G. 1998. Frasnian-Famennian biotic crisis: Undervalued tectonic control? Paleogeogr Paleoclimatol Paleoecol, 141: 177–198
[83]  Racki G. 2003. End-Permian mass extinction: Oceanographic consequences of double catastrophic volcanism. Lethaia, 35: 171–173
[84]  Rampino M R, Adler A C. 1998. Evidence for abrupt latest Permian mass extinction of foraminifera: Results of tests for the Signor-Lipps effect.Geology, 26: 415–418
[85]  Rampino M R, Prokoph A, Adler A, 2000. Tempo of the End-Permian event: High-resolution cyclostratigraphy at the Permian-Triassic boundary. Geology, 28: 643–646
[86]  Rasmussen C M ?, Harper D A T. 2011. Interrogation of distributional data for the End Ordovician crisis interval: Where did disaster strike? Geol J, 46: 478–500
[87]  Raup D M. 1991. Extinction: Bad Genes or Bad Luck? New York: Norton. 210
[88]  Raup D M, Sepkoski J J. 1982. Mass extinctions in the marine fossil record. Science, 215: 1501–1503
[89]  Reichow M K, Pringle M S, Al''Mukhamedov A I, et al. 2009. The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis. Earth Planet Sci Lett, 277: 9–20
[90]  Renne P R, Zhang Z C, Richards M A, et al. 1995. Synchrony and causal relations between Permian-Triassic boundary crises and Siberian flood volcanism. Science, 269: 1413–1416
[91]  Reysenbach A L, Voytek M, Manicnelli R. 2001. Thermophiles: Biodiversity, Ecology, and Evolution. Berlin: Springer. 218
[92]  Rickards R B, Wright A J. 2002. Lazarus taxa, refugia and relict faunas: Evidence from graptolites. J Geol Soc, 159: 1–4
[93]  Romano C, Goudemand N, Vennemann T W, et al. 2013. Climatic and biotic upheavals following the End-Permian mass extinction. Nat Geosci,6: 57–60
[94]  Rong J Y, Boucot A J, Harper D A T, et al. 2006. Global analyses of brachiopod faunas through the Ordovician and Silurian transition: Reducing the role of the Lazarus effect. Can J Earth Sci, 43: 23–39
[95]  Rong J Y, Harper D A T. 1988. A global synthesis of the latest Ordovician Hirnantian brachiopod faunas. Trans R Soc Edinb-Earth Sci, 79:383–402
[96]  Rong J Y, Harper D A T. 1999. Brachiopod survival and recovery from the latest Ordovician mass extinctions in South China. Geol J, 34:321–348
[97]  Rong J Y, Shen S Z. 2002. Comparative analysis of the End-Permian and End-Ordovician brachiopod mass extinctions and survivals in South China. Paleogeogr Palaeoclimatol Paleoecol, 188: 25–38
[98]  Rong J Y, Harper D A T, Zhan R B, et al. 2005. Silicified rhynchonelliform brachiopods from the Kuniutan Formation (Darriwilian: Middle Ordovician), Guiyang, South China. Palaeontology, 48: 1211–1240
[99]  Royer D L, Berner R A, Montanez I P, et al. 2004. CO2 as a primary driver of Phanerozoic climate change. GSA Today, 14: 4–10
[100]  Sadler P M, Cooper R A, Melchin M. 2009. High-resolution, early Paleozoic (Ordovician-Silurian) time scales. Geol Soc Am Bull, 121: 887–906
[101]  Saltzman M R. 2005. Phosphorus, nitrogen, and the redox evolution of the Paleozoic oceans. Geology, 33: 573–576
[102]  Schindler E. 1993. Event-stratigraphic markers within the Kellwasser Crisis near the Frasnian Famennian Boundary (Upper Devonian) in Germany. Paleogeogr Paleoclimatol Paleoecol, 104: 115–125
[103]  van de Schootbrugge B, Bachan A, Suan G, et al. 2013. Microbes, mud and methane: Cause and consequence of recurrent Early Jurassic anoxia following the End-Triassic mass extinction. Palaeontology, 56: 685–709
[104]  白顺良. 1998. 泥盆纪弗拉阶-法门阶事件的化学-生物地层学研究. 北京大学学报(自然科学版), 34: 363-369
[105]  曹长群, 王伟, 金玉玕. 2002. 浙江煤山二叠-三叠系界线附近碳同位素变化. 科学通报, 47: 302-306
[106]  陈秀琴, 马学平. 2004. 华南晚泥盆世腕足动物的灭绝和复苏. 见: 戎嘉余, 方宗杰, 主编. 生物大灭绝与复苏—来自华南古生代和三叠纪的证据. 合肥: 中国科学技术大学出版社. 317-356
[107]  陈旭, 樊隽轩, Melchin M J, 等. 2004. 华南奥陶纪末笔石灭绝及幸存的进程及机制. 见: 戎嘉余, 方宗杰, 主编. 生物大灭绝与复苏—来自华南古生代和三叠纪的证据. 合肥: 中国科学技术大学出版社. 9-54
[108]  黄志诚, 刘冠邦. 2012. 论""太湖冲击坑溅射物""—来自太湖现代沉积物中铁质结核的证据. 高校地质学报, 18: 379-389
[109]  季强. 1991. 华南弗拉斯阶-法门阶界限层牙形刺生物地层研究—兼论弗拉斯-法门期生物灭绝事件. 中国地质科学院院报, 23: 115-127
[110]  龚一鸣, 李保华, 司远兰, 等. 2002. 晚泥盆世赤潮与生物集群绝灭. 科学通报, 47: 554-560
[111]  李荣玉. 1996. 黔西北晚奥陶世Dalmanella testudinaria及Dorytreta longicrura(腕足类)居群动态学研究. 古生物学报, 35: 752-765
[112]  廖卫华. 2004. 华南晚泥盆世弗拉期-法门期之交大灭绝后珊瑚群的复苏. 见: 戎嘉余, 方宗杰, 主编. 生物大灭绝与复苏—来自华南古生代和三叠纪的证据. 合肥: 中国科学技术大学出版社. 259-280
[113]  刘建波, 江琦洋一, 杨守仁, 等. 2007. 贵州罗甸二叠纪末生物大灭绝事件后沉积的微生物岩的时代和沉积学特征. 古地理学报, 9: 473-486
[114]  马学平. 2004. 华南泥盆纪弗拉期-法门期之交的生物灭绝及相关沉积-地化事件. 见: 戎嘉余, 方宗杰, 主编. 生物大灭绝与复苏—来自华南古生代和三叠纪的证据. 合肥: 中国科学技术大学出版社. 409-436
[115]  潘华璋. 2004. 二叠纪至中三叠世腹足类灭绝与复苏评述. 见: 戎嘉余, 方宗杰, 主编. 生物大灭绝与复苏—来自华南古生代和三叠纪的证据. 合肥: 中国科学技术大学出版社. 719-729
[116]  戎嘉余. 2006. 前言. 见: 戎嘉余, 方宗杰, 周忠和, 等, 主编. 生物的起源、辐射与多样性演变-华夏化石记录的启示. 北京: 科学出版社. 824-826
[117]  戎嘉余, 陈旭, 周志毅, 等. 2004. 华南奥陶纪-志留纪之交常见生物类群如何应对灾变环境. 见: 戎嘉余, 方宗杰, 主编. 生物大灭绝与复苏—来自华南古生代和三叠纪的证据. 合肥: 中国科学技术大学出版社. 235-256
[118]  戎嘉余, 方宗杰. 2004a. 华南古生代三次大灭绝及其后残存与复苏的分析对比. 见: 戎嘉余, 方宗杰, 主编. 生物大灭绝与复苏—来自华南古生代和三叠纪的证据. 合肥: 中国科学技术大学出版社. 931-1019
[119]  戎嘉余, 方宗杰. 2004b. 论大灭绝的内涵和""将古论今""的思维方式. 见: 戎嘉余, 方宗杰, 主编. 生物大灭绝与复苏—来自华南古生代和三叠纪的证据. 合肥: 中国科学技术大学出版社. 1019-1027
[120]  戎嘉余, 方宗杰. 2004c. 生物大灭绝与复苏—来自华南古生代和三叠纪的证据(上、下卷). 合肥: 中国科学技术大学出版社. 1087
[121]  戎嘉余, 方宗杰, 陈旭, 等. 1996. 生物复苏—大灭绝后生物演化历史的第一幕. 古生物学报, 35: 259-271
[122]  戎嘉余, 方宗杰, 廖卫华. 2001. 华南史前海洋生物大灭绝与复苏之初探.台中: 国立自然历史博物馆, 459-474
[123]  戎嘉余, 詹仁斌. 2004. 华南晚奥陶世腕足动物的大灭绝. 见: 戎嘉余, 方宗杰, 主编. 生物大灭绝与复苏—来自华南古生代和三叠纪的证据. 合肥: 中国科学技术大学出版社. 71-96
[124]  徐桂荣, 童金南. 1991. 时间对比与集群灭绝事件. 见: 杨遵仪, 吴顺宝, 殷鸿福, 主编. 华南二叠-三叠纪过渡期地质事件. 北京: 地质出版社. 127-138
[125]  杨遵仪, 吴顺宝, 殷鸿福. 1991. 华南二叠-三叠纪过渡期地质事件. 北京: 地质出版社. 190
[126]  殷鸿福, 黄思骥, 张克信, 等. 1989. 华南二叠-三叠纪之交的火山活动及其对生物灭绝的影响. 地质学报, 63: 169-181
[127]  殷鸿福, 童金南. 1997. 地史转折期的生态系. 地学前缘, 4: 111-116
[128]  殷鸿福, 谢树成, 秦建中, 等. 2008. 对地球生物学、生物地质学和地球生物相的一些探讨. 中国科学D辑: 地球科学, 38: 1473-1480
[129]  殷鸿福, 谢树成, 童金南, 等. 2009. 谈地球生物学的重要意义. 古生物学报, 48: 6-14
[130]  殷鸿福, 徐道一, 吴瑞堂. 1988. 地质演化突变观. 武汉: 地质大学出版社. 210
[131]  张克信, 赖旭龙, 童金南, 等. 2009. 全球界线层型华南浙江长兴煤山剖面牙形石序列研究进展. 古生物学报, 48: 474-486
[132]  赵资奎, 毛雪瑛, 柴之芳, 杨高创, 张福成, 严正. 2009. 广东省南雄盆地白垩纪-古近纪(K/T)过渡时期地球化学环境变化和恐龙灭绝: 恐龙蛋化石提供的证据. 科学通报, 54: 201-209
[133]  周志毅, 袁文伟, 韩乃仁, 等. 2004. 扬子陆块奥陶纪末期-志留纪早期三叶虫的灭绝和复苏. 见: 戎嘉余, 方宗杰, 主编. 生物大灭绝与复苏—来自华南古生代和三叠纪的证据. 合肥: 中国科学技术大学出版社. 127-152
[134]  Abbas S, Abbas A. 1998. Volcanogenic dark matter and mass extinctions. Astropart Phys, 8: 317-320
[135]  Adatte T, Keller G. 2013. Chicxulub impact and the KT breccia from North America to Brazil: Stratigraphy, age, nature and origin. London: Abstracts of Volcanism, Impacts and Mass Extinctions, 20
[136]  Alvarez L W, Alvarez W, Asaro F, et al. 1980. Extraterrestrial causes of the Cretaceous-Tertiary extinction. Science, 208: 1095-1108
[137]  Archibald J D, Clemens W A, Padian K, et al. 2010. Cretaceous Extinctions: Multiple Causes. Science, 328: 973-973
[138]  Bambach R K, 2006. Phanerozoic biodiversity mass extinctions. Annu Rev Earth Planet Sci, 34: 127-155
[139]  Bambach R K, Knoll A H, Sepkoski J J. 2002. Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proc Natl Acad Sci USA, 99: 6854-6859
[140]  Bambach R K, Knoll A H, Wang S C. 2004. Origination, extinction, and mass depletions of marine diversity. Paleobiology, 30: 522-542
[141]  Bassett D, Macleod K G, Miller J E, et al. 2007. Oxygen isotope composition of biogenic phosphate and the temperature of Early Ordovician seawater. Palaios, 22: 98-103
[142]  Becker L, Poreda R J, Basu A R, et al. 2004. Bedout: A possible End-Permian impact crater offshore of Northwestern Australia. Science, 304: 1469-1476
[143]  Berner R A, Kothavala Z. 2001. GEOCARB Ⅲ: A revised model of atmospheric CO2 over phanerozoic time. Amer J Sci, 301: 182-204
[144]  Black B A, Elkins-Tanton L T, Rowe M C, et al. 2012. Magnitude and consequences of volatile release from the Siberian Traps. Earth Planet Sci Lett, 317: 363-373
[145]  Blackburn T J, Olsen P E, Bowring S A, et al. 2013. Zircon U-Pb geochronology links the End-Triassic extinction with the Central Atlantic Magmatic Province. Science, 340: 941-945
[146]  Bond D P G, Wignall P B. 2010. Pyrite framboid study of marine Permian-Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction. Geol Soc Am Bull, 122: 1265-1279
[147]  Bonis N R, Ruhl M, Kurschner W M. 2010. Climate change driven black shale deposition during the End-Triassic in the western Tethys. Paleogeogr Paleoclimatol Paleoecol, 290: 151-159
[148]  Boucot A J, Rong J Y, Chen X et al. 2003. Pre-Hirnantian Ashgill climatically warm event in the Mediterranean region. Lethaia, 36: 119-132
[149]  Brand U. 1989. Global climatic changes during the Devonian-Mississippian-Stable isotope biogeochemistry of brachiopods. Glob Planet Change, 75: 311-329
[150]  Brand U, Posenato R, Came R et al. 2012. The End-Permian mass extinction: A rapid volcanic CO2 and CH4-climatic catastrophe. Chem Geol, 322-323: 121-144
[151]  Cilliers P. 1998. Complexity and Postmodernism: Understanding Complex Systems. London: Routledge. 168
[152]  Clarke A. 1993. Temperature and extinction in the sea: A physiologist''s view. Paleobiology, 19: 499-518
[153]  Droser M L, Bottjer D J, Sheehan P M, et al. 2000. Decoupling of taxonomic and ecological severity of Phanerozoic marine mass extinctions. Geology, 28: 675-678
[154]  Erwin D H. 1993. The Great Paleozoic Crisis: Life and Death in the Permian. New York: Columbia University Press. 327
[155]  Erwin D H. 2006. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago. Princeton: Princeton University Press. 314
[156]  Farley K A, Montanari A, Shoemaker E M, et al. 1998. Geochemical evidence for a comet shower in the Late Eocene. Science, 280: 1250-1253
[157]  Farley K A, Mukhopahyay S, Isozaki Y, et al. 2001. An extraterrestrial impact at the Permian-Triassic boundary? Science, 293: 2343
[158]  Feng Q L, He W H, Gu S Z, et al. 2007. Radiolarian evolution during the latest Permian in South China. Glob Planet Change, 55: 177-192
[159]  Fielding C R, Frank T D, Bergenheier L P, et al. 2008. Stratigraphic imprint of the Late Paleozoic Ice Age in eastern Australia: A record of alternating glacial and nonglacial climate regime. J Geol Soc, 165: 129-140
[160]  Finnegan S, Bergmann K, Eiler J M, et al. 2011. The magnitude and duration of Late Ordovician-Early Silurian glaciation. Science, 331: 903-906
[161]  Finnegan S, Heim N A, Peters S E, et al. 2012. Climate change and the selective signature of the Late Ordovician mass extinction. Proc Nat Acad Sci USA, 109: 6829-6834
[162]  Fortey R A, Cocks L R M. 2005. Late Ordovician global warming—The Boda event. Geology, 44: 405-408
[163]  Gastaldo R A, Neveling J, Clark C K, et al. 2009. The terrestrial Permian-Triassic boundary event bed is a nonevent. Geology, 37: 199-202
[164]  Gibson S A. 2013. The role of mantle volatiles in the formation of large igneous provinces and associated mass extinction events. London: Abstracts of Volcanism, Impacts and Mass Extinctions. 39
[165]  Giles P S. 2012. Low-latitude Ordovician to Triassic brachiopod habitat temperatures (BHTs) determined from δ18O[brachiopod calcite]: A cold hard look at ice-house tropical oceans. Paleogeogr Paleoclimatol Paleoecol, 317-318: 134-152
[166]  Gingerich P D. 2003. Land-to-sea transition in early whales: Evolution of Eocene Archaeoceti (Cetacea) in relation to skeletal proportions and locomotion of living semiaquatic mammals. Paleobiology, 29: 429-454
[167]  Gould S J. 1977. Ever Since Darwin-Reflections in Natural History. New York: Norton. 285
[168]  Gould S J. 1989. Wonderful Life: The Burgess Shale and the Nature of History. New York: Norton. 352
[169]  Gould S J, Calloway C B. 1980. Clams and brachiopods-ships that pass in the night. Paleobiology, 6: 383-396
[170]  Gradstein F M, Ogg J G, Schmits M D, et al. 2012. The Geological Time Scale 2012. Amsterdan: Elsevier. 1144
[171]  Grahn Y, Paris F. 2011. Emergence, biodiversification and extinction of the chitinozoan group. Geol Magaz, 148: 226-236
[172]  Grice K, Cao C Q, Love G D, et al. 2005. Photic zone euxinia during the Permian-Triassic superanoxic event. Science, 307: 706-709
[173]  Grossman E L, Yancey T E, Jones T E, et al. 2008. Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes. Paleogeogr Paleoclimatol Paleoecol, 268: 222-233
[174]  Hallam A. 1972. Models involving population dynamics. In: Schopf T J M, ed. Models in Paleobiology Chapter 4. San Francisco: Freeman Cooper. 62-80
[175]  Hallam A. 1990. Mass Extinction Process: Earth-bound causes. In: Briggs D E C, Crowther B R, eds. Palaeobiology. Oxford: Blackwell Sientific Publications. 160-164
[176]  Hallam A. 2002. How catastrophic was the End-Triassic mass extinction? Lethaia, 35: 147-157
[177]  Hallam A, Wignall P B. 1997. Mass Extinctions and Their Aftermath. Oxford: Oxford University Press. 320
[178]  Hallam A, Wignall P B. 2004. Discussion on sea-level change and facies development across potential Triassic-Jurassic boundary horizons, SW Britain. J Geol Soc, 161: 1053-1056
[179]  Hallam A, Wignall P B, Yin J R et al. 2000. An inverstigation into possible facies changes across the Triassic-Jurassic boundary in southern Tibet. Sediment Geol, 137: 101-106
[180]  Hammarlund E U, Dahl T W, Harper D A T, et al. 2012. A sulfidic driver for the End-Ordovician mass extinction. Earth Planet Sci Lett, 331: 128-139
[181]  Hannisdal B, Peters S E. 2011. Phanerozoic earth system evolution and marine biodiversity. Science, 334: 1121-1124
[182]  Harper D A T, Rong J Y. 1995. Patterns of change in the brachiopod faunas through the Ordovician-Silurian interface. Mod Geol, 20: 83-100
[183]  Harper D A T, Rong J Y. 2008. Completeness of the Hirnantian brachiopod record: Spatial heterogeneity through the End Ordovician extinction event. Lethaia, 41: 195-197
[184]  Hautmann M S, Cai H W, Sha J G. 2008. Extinction-recovery pattern of level-bottom faunas across the Triassic-Jurassic boundary in Tibet: Implications for potential killing mechanisms. Palaios, 23: 711-718
[185]  He W H, Shi G R, Feng Q L, et al. 2007. Brachiopod miniaturization and its possible causes during the Permian-Triassic crisis in deep water environments, South China. Paleogeogr Paleoclimatol Paleoecol, 252: 145-163
[186]  He W H, Twitchett R J, Zhang Y, et al. 2010. Controls on body size during the Late Permian mass extinction event. Geobiology, 8: 391-402
[187]  Heard S B, Mooers A O. 2002. Signatures of random and selective mass extinctions in phylogenetic tree balance. Syst Biol, 51: 889-897
[188]  Herrmann A D, Haupt B J, Patzkowsky M E, et al. 2004. Response of Late Ordovician paleoceanography to changes in sea level, continental drift, and atmospheric pCO2: Potential causes for long-term cooling and glaciation. Paleogeogr Paleoclimatol Paleoecol, 210: 385-401
[189]  Hesselbo S P, Robinson S A, Surlyk F. 2004. Sea-level change and facies development across potential Triassic-Jurassic boundary horizons, SW Britain. J Geol Soc, 161: 365-379
[190]  Hesselbo S P, Robinson S A, Surlyk F, et al. 2002. Terrestrial and marine extinction at the Triassic-Jurassic boundary synchronized with major carbon-cycle perturbation: A link to initiation of massive volcanism? Geology, 30: 251-254
[191]  Hren M T, Tice M M, Chamberlain C P. 2009. Oxygen and hydrogen isotope evidence for a temperate climate 3.42 billion years ago. Nature, 462: 205-208
[192]  Huang B, Harper D A T, Zhan R B, et al. 2010. Can the Lilliput Effect be detected in the brachiopod faunas of South China following the terminal Ordovician mass extinction? Paleogeogr Paleoclimatol Paleoecol, 285: 277-286
[193]  Huang B, Rong J Y, Cocks L R M. 2012. Global palaeobiogeographical patterns in brachiopods from survival to recovery after the end-Ordovician mass extinction. Paleogeogr Paleoclimatol Paleoecol, 317: 196-205
[194]  Huey R B, Ward P D. 2005. Hypoxia, global warming, and terrestrial Late Permian extinctions. Science, 308: 398-401
[195]  Hughes T P, Baird A H, Bellwood D R, et al. 2003. Climate change, human impacts, and the resilience of coral reefs. Science, 301: 929-933
[196]  Jaanusson V. 1984. Ordovician benthic macrofaunal association. In: Bruton D L, ed. Aspects of the Ordovician System. Oslo: Universitetsforlaget. 127-139
[197]  Jablonski D. 1986. Causes and consequences of mass extinctions. In: Elliott D K, ed. Dynamics of Extinction. New York: John Wiley and Sons. 183-229
[198]  Jablonski D. 2005. Mass extinctions and macroevolution. Paleobiology, 31: 192-210
[199]  Jablonski D, Flessa K W. 1986. The taxonomic structure of shallow-water marine faunas: Implications for Phanerozoic extinctions. Malacologia, 27: 43-66
[200]  Jaffrés J B D, Shields G A, Wallman K. 2007. The oxygen isotope evolution of seawater: A critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years. Earth-Sci Rev, 83: 83-122
[201]  Jardine P. 2011. Paleocene-Eocene Thermal Maximum. Palaeont Online, 1: 1-7
[202]  Jia C, Huang J, Kershaw S, et al. 2012. Microbial response to limited nutrients in shallow water immediately after the End-Permian mass extinction. Geobiology, 10: 60-71
[203]  Jarvis I, Gale A S, Jenkyns H C, et al. 2006. Secular variation in Late Cretaceous carbon isotopes: A new δ13C carbonate reference curve for the Cenomanian-Companian (99.6-70.6). Geol Mag, 143: 561-608
[204]  Jenkyns H C, Jones C E, Gr?cke D R, et al. 2002. Chemostratigraphy of the Jurassic System: Applications, limitations and implications for palaeoceanography. J Geol Soc, 159: 351-378
[205]  Jin Y G, Shen S Z, Henderson C M, et al. 2006. The Global Stratotype Section and Point (GSSP) for the boundary between the Capitanian and Wuchiapingian stage (Permian). Episodes, 29: 253-262
[206]  Jin Y G, Wang Y, Wang W S, et al. 2000. Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science, 289: 432-436
[207]  Joachimski M M, Breisig S, Buggisch W, et al. 2009. Devonian climate and reef evolution: Insights from oxygen isotopes in apatite. Earth Planet Sci Lett, 284: 599-609
[208]  Joachimski M M, Buggisch W. 2002. Conodont apatite δ18O signatures indicate climatic cooling as a trigger of the Late Devonian mass extinction. Geology, 30: 711-714
[209]  Joachimski M M, Lai X L, Shen S Z, et al. 2012. Climate warming in the latest Permian and the Permian-Triassic mass extinction. Geology, 40: 195-198
[210]  Joachimski M M, van Geldern R, Breisig S, et al. 2004. Oxygen isotope evolution of biogenic calcite and apatite during the Middle and Late Devonian. Intern J Earth Sci, 93: 542-553
[211]  Joachimski M M, von Bitter P H, Buggisch W. 2006. Constraints on Pennsylvanian glacioeustatic sea-level changes using oxygen isotopes of conodont apatite. Geology, 34: 277-280
[212]  Johnson J G, Klapper G, Sandberg C A. 1985. Devonian eustatic fluctuations in Euramerica. Geol Soc Am Bull, 96: 567-587
[213]  Jourdan F, Renne P R, Reimold W U. 2009. An appraisal of the ages of terrestrial impact structures. Earth Planet Sci Lett, 286: 1-13
[214]  Kaiho K, Arinobu T, Ishiwatari R, et al. 1996. Latest paleocene benthic foraminiferal extinction and environmental changes at Tawanui, New Zealand. Paleoceanography, 11: 447-465
[215]  Kaiho K, Chen Z Q, Sawada K. 2009. Possible causes for a negative shift in the stable carbon isotope ratio before, during and after the End-Permian mass extinction in Meishan, South China. Aust J Earth Sci, 56: 799-808
[216]  Kaiho K, Kajiwara Y, Miura Y. 2002. End-Permian catastrophe by bolide impact: Evidence of a gigantic release of sulfur from the mantle: Reply. Geology, 30: 856-856
[217]  Kaiho K, Kajiwara Y, Nakano T, et al. 2001. End-Permian catastrophe by a bolide impact: Evidence of a gigantic release of sulfur from the mantle. Geology, 29: 815-818
[218]  Kaljo D, Martma T. 2006. Application of carbon isotope stratigraphy to dating the Baltic Silurian rocks. GFF, 128: 123-129
[219]  Kamo S L, Czamanske G K, Amelin Y, et al. 2003. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth Planet Sci Lett, 214: 75-91
[220]  Kauffman E G, Harries P J. 1996. The important of crisis progenitors in recovery from mass extinction. Geol Soc, 102: 15-39
[221]  Keller G. 2008. Cretaceous climate, volcanism, impacts, and biotic effects. Cretac Res, 29: 754-771
[222]  Keller G. 2012. The Cretaceous-Tertiary mass extinction, Chicxulub impact and Deccan volcanism. In: Talent J A, ed. Earth and Live, International Year of Planet Earth. Berlin: Springer-Verlag. 759-793
[223]  Keller G, Adatte T, Bhowmick P K, et al. 2012. Nature and timing of extinctions in Cretaceous-Tertiary planktic foraminifera preserved in Deccan intertrappean sediments of the Krishna-Godavari Basin, India. Earth Planet Sci Lett, 341: 211-221
[224]  Keller G, Sahni A, Bajpai S. 2009. Deccan volcanism, the KT mass extinction and dinosaurs. J Biosci, 34: 709-728
[225]  Kennett J P, Stott L D. 1991. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Paleocene. Nature, 353: 225-229
[226]  Kiessling W, Aberhan M, Brenneis B, et al. 2007. Extinction trajectories of benthic organisms across the Triassic-Jurassic boundary. Paleogeogr Paleoclimatol Paleoecol, 244: 201-222
[227]  Kiessling W. 2010. Reef expansion during the Triassic: Spread of photosymbiosis balancing climatic cooling. Paleogeogr Paleoclimatol Paleoecol, 290: 11-19
[228]  Kiessling W, Simpson C. 2011. On the potential for ocean acidification to be a general cause of ancient reef crises. Glob Change Biol, 17: 56-67
[229]  Knauth L P, Lowe D R. 2003. High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geol Soc Am Bull, 115: 566-580
[230]  Knauth L P. 2005. Temperature and salinity history of the Precambrian ocean: Implications for the course of microbial evolution. Paleogeogr Paleoclimatol Paleoecol, 219: 53-69
[231]  Knoll A H, Barnbach R K, Payne J L, et al. 2007. Paleophysiology and End-Permian mass extinction. Earth Planet Sci Lett, 256: 295-313
[232]  Koeberl C, MacLeod K G. 2002. Catastrophic Events and Mass Extinctions: Impacts and Beyond. Boulder: Geological Society of America. 1-746
[233]  Korchagin, O A. 2011. Foraminifers in the Global Stratotype (GSSP) of the Permian-Triassic Boundary (Bed 27, Meishan, South China). Stratigr Geol Correl, 19: 40-54
[234]  Korte C, Kozur H W. 2010. Carbon-isotope stratigraphy across the Permian-Triassic boundary: A review. J Asian Earth Sci, 39: 215-235
[235]  Krull E S, Lehrmann D J, Druke D, et al., 2004. Stable carbon isotope stratigraphy across the Permian-Triassic boundary in shallow marine carbonate platforms, Nanpanjiang Basin, south China. Paleogeogr Paleoclimatol Paleoecol, 204: 297-315
[236]  Kuiper K F, Deino A, Hilgen F J, et al. 2008. Synchronizing rock clocks of Earth history. Science, 320: 500-504
[237]  Kurschner W M, Bonis N R, Krystyn L. 2007. Carbon-isotope stratigraphy and palynostratigraphy of the Triassic-Jurassic transition in the Tiefengraben section-Northern Calcareous Alps (Austria). Paleogeogr Paleoclimatol Paleoecol, 244: 257-280
[238]  Larwood G P. 1988. Extinction and Survival in the Fossil Record. New York: Oxford University Press. 365
[239]  Le Heron D P, Ghienne J F, El Houicha M, et al. 2007. Maximum extent of ice sheets in Morocco during the Late Ordovician glaciation. Paleogeogr Paleoclimatol Paleoecol, 245: 200-226
[240]  Lefebvre V, Servais T, Francois L, et al. 2010. Did a Katian large igneous province trigger the Late Ordovician glaciation? A hypothesis tested with a carbon cycle model. Paleogeogr Paleoclimatol Paleoecol, 296: 310-319
[241]  Lehnert O, Mannik P, Joachimski M M, et al. 2010. Palaeoclimate perturbations before the Sheinwoodian glaciation: A trigger for extinctions during the ‘Ireviken Event’. Paleogeogr Paleoclimatol Paleoecol, 296: 320-331
[242]  Lorenz E. 1972. Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas? Boston: 139th Meeting of the American Association for the Advancement of Science. 1-3
[243]  Luo G M, Kump L R, Wang Y B, et al. 2010. Isotopic evidence for an anomalously low oceanic sulfate concentration following End-Permian mass extinction. Earth Planet Sci Lett, 300: 101-111
[244]  MacLeod N. 2002. The causes of Phanerozoic extinctions. In: Rothschild L, Lister A, eds. Evolution on Planet Earth. London: Academic Press. 235-259
[245]  Marshall C R. 1998. Determining stratigraphic ranges. In: Donovan S K, Paul C R C, eds. The Adequacy of the Fossil Record. Chichester: John Wiley and Sons. 23-54
[246]  Mateo P, Keller G, Khozyem H M, et al. 2013. Volcanism, impact, mass extinction and delayed recovery in the western North Atlantic and Caribbean. London: Abstracts of Volcanism, Impacts and Mass Extinctions. 56
[247]  McElwain J C, Beerling D J, Woodward F I. 1999. Fossil plants and global warming at the Triassic-Jurassic boundary. Science, 285: 1386-1390
[248]  McGhee G R. 1996. The Late Devonian Mass Extinction: The Frasnian/Famennian Crisis. New York: Columbia University Press. 303
[249]  McGhee G R, Clapham M E, Sheehan P M, et al. 2013. A new ecological-severity ranking of major Phanerozoic biodiversity crises. Palaeogeogr Palaeoclimat Palaeoecol, 370: 260-270
[250]  Mcghee G R, Gilmore J S, Orth C J, et al. 1984. No geochemical evidence for an asteroidal impact at Late Devonian Mass Extinction Horizon. Nature, 308: 629-631
[251]  McGhee G R, Sheehan P M, Bottjer D J, et al. 2004. Ecological ranking of Phanerozoic biodiversity crises: Ecological and taxonomic severities are decoupled. Paleogeogr Paleoclimatol Paleoecol, 211: 289-297
[252]  McGhee G R, Sheehan P M, Bottjer D J, et al. 2012. Ecological ranking of Phanerozoic biodiversity crises: The Serpukhovian (Early Carboniferous) crisis had a greater ecological impact than the end-Ordovician. Geology, 40: 147-150
[253]  McGhee G R. 1989. The Frasnian-Famennian extinction event. In: Donovan S K, ed. Mass Extinctions: Processes and Evidence. New York: Columbia University Press. 133-151
[254]  McLaren D J. 1970. Time, life and boundaries. J Palaeont, 44: 801-805
[255]  McNamara K J, Feist R, Ebach M C. 2009. Patterns of evolution and extinction in the last Harpetid trilobites during the Late Devonian (Frasnian). Palaeontology, 52: 11-33
[256]  McNamara K J, Yu F, Zhou Z Y. 2003. Ontogeny and heterochrony in the oryctocephalid trilobite Arthricocephalus from the Early Cambrian of China. Spec Pap Palaeont, 70: 103-126
[257]  McNamara K J, Yu F, Zhou Z Y. 2006. Ontogeny and heterochrony in the Early Cambrian oryctocephalid trilobites Changaspis,Duyunaspis and Balangia from China. Palaeontology, 49: 1–19
[258]  Meng F W, Ni P, Schiffbsuer J D, et al. 2011. Ediacaran seawater temperature: Evidence from inclusions of Sinian halite. Precambrian Res, 184:63–69
[259]  Mii H S, Grossman E L, Yancey T E. 1999. Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation. Geol Soc Am Bull, 111: 960–973
[260]  Mii H S, Grossman E L, Yancey T E, et al. 2001. Isotope records of brachiopod shells from the Russian Platform-evidence for the onset of mid-Carboniferous glaciation. Chem Geol, 175: 133–147
[261]  Molina E, Alegret L, Arenillas I, et al. 2006. The global boundary stratotype section and point for the base of the Danian Stage (Palaeocene, Palaeogene, “Tertiary”, Cenozoic) at El Kef, Tunesia-Original definition and revision. Episodes, 29: 263–273
[262]  Mundil R, Ludwig K R, Metcalfe I, et al. 2004. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science,305: 1760–1763
[263]  Munnecke A, Calner M, Harper D A T, et al. 2010. Ordovician and Silurian sea-water chemistry, sea level, and climate: A synopsis. Paleogeogr Paleoclimatol Paleoecol, 296: 389–413
[264]  Myers N, Knoll A H. 2001. The biotic crisis and the future of evolution. Proc Natl Acad Sci USA, 98: 5389–5392
[265]  Nardin E, Godderis Y, Donnadieu Y, et al. 2011. Modeling the early Paleozoic long-term climatic trend. Geol Soc Am Bull, 123: 1181–1192
[266]  Newell N D. 1962. Paleontological gaps and geochronology. J Paleontol, 36: 592–610
[267]  Newell N D. 1967. Revolutions in the history of life. Geol Soc Am Spec Pap, 89: 63–91
[268]  Nützel A, Joachimski M, Correa M L. 2010. Seasonal climatic fluctuations in the Late Triassic tropis—High-resolution oxygen isotope records from aragonic bivalve shells (Cassia Formation, Northern Italy). Paleogeogr Paleoclimatol Paleoecol, 285: 194–204
[269]  Ogden D E, Sleep N H. 2012. Explosive eruption of coal and basalt and the End-Permian mass extinction. Proc Natl Acad Sci USA, 109: 59–62
[270]  Pálfy J, Demeny A, Haas J, et al. 2001. Carbon isotope anomaly and other geochemical changes at the Triassic-Jurassic boundary from a marine section in Hungary. Geology, 29: 1047–1050
[271]  Pálfy J, Mortensen J K, Carter E S, et al. 2000. Timing the End-Triassic mass extinction: First on land, then in the sea? Geology, 28: 39–42
[272]  Pálfy J, Smith P L, Mortensen J K. 2002. Dating the end-Triassic and Early Jurassic mass extinctions, correlative large igneous provinces, and isotopic events. In: Koeberl C, MacLeod K G, eds. Catastrophic Events and Mass Extinctions: Impacts and Beyond. Boulder: Geological Society of America. 523–532

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133