全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

四川盆地中三叠统雷口坡组碳酸盐台地巨型浅滩化研究

, PP. 457-471

Keywords: 碳酸盐台地,台内滩,颗粒岩,巨型浅滩化,雷口坡组,中三叠统,四川盆地

Full-Text   Cite this paper   Add to My Lib

Abstract:

?碳酸盐台地演化过程中有一种比较常见的沉积现象,即浅滩化,并通常认为其连续性较差.本文报道了最近在四川盆地中三叠统雷口坡组新发现的一种罕见的碳酸盐台地“巨型浅滩化(mega-shoaling)”现象.研究区于中三叠世雷口坡期在干旱炎热的气候条件下发育了受限的陆表海型碳酸盐台地,其中的雷-1-1亚段B层沉积了一套几乎遍及全盆地的滩相颗粒岩,形成所谓的巨型(盆地规模)浅滩化特征.根据岩芯精细描述和薄片镜下鉴定,发现这套滩相颗粒岩以砂屑云岩(灰岩)为主,其次为鲕粒云岩(灰岩),以发育局限泻湖-台内滩、局限泻湖-台内滩-台坪和潮坪-潮缘滩这3种向上变粗、变浅的沉积序列为特征;多旋回小层划分与对比研究发现,这套滩相颗粒岩在横向上具有良好的可追踪对比性和等时性;基于岩芯刻度测井方法建立的测井相模板,对全盆地235口井进行了逐井解释,发现滩相颗粒岩的累计厚度一般在10~40m,连续分布面积超过1.5×105km2,这充分说明了当时的碳酸盐台地确实在较短时间内发生了巨型浅滩化作用.重点从古构造与古地貌、古气候、海平面相对升降变化和古水动力等成滩条件角度分析了这种巨型浅滩化的成因,认为多种地质因素的有机结合为巨型浅滩化创造了有利的地形条件,包括平静的古构造环境、相对平坦的古地貌和蒸发岩的填平补齐作用;在稳定沉降的碳酸盐台地上,具有快速海侵到缓慢海退的多旋回高频海平面升降变化,这既有利于颗粒滩在垂向上的多旋回连续叠加发育,也有利于颗粒滩的横向迁移、连片和叠置,从而形成大面积连续分布的巨型颗粒滩沉积,形成巨型浅滩化.对这种碳酸盐台地具有现今盆地尺度的巨型浅滩化研究,有助于丰富完善对碳酸盐台地滩相沉积的认识,还因滩相沉积通常发育优质油气储层,所以还具有重要的储层地质学意义.

References

[1]  Trela W. 2005. Condensation and phosphatization of the middle and upper Ordovician limestones on the Malopolska Block(Poland): Response to paleoceanographic conditions. Sediment Geol, 178: 219-236
[2]  Tucker M E, Wright V P. 1990. Carbonate Sedimentology. Oxford: Blackwell Science. 314-364
[3]  Worsley D, Baarli B G, Howe M P A, et al. 2011. New data on the Bruflat Formation and the Llandovery/Wenlock transition in the Oslo Region, Norway. Norw J Geol, 91: 101-120
[4]  关建哲, 戴克琳, 杜其良. 1990. 峨眉山绿豆岩的应用及其成因探索. 成都理工大学学报, 17: 41-42
[5]  郭正吾, 邓康龄, 韩永辉, 等. 1996. 四川盆地形成与演化. 北京: 地质出版社. 41-157
[6]  黄隆基. 1985. 放射性测井原理. 北京: 石油工业出版社. 3-81
[7]  李凌, 谭秀成, 丁熊, 等. 2011. 四川盆地雷口坡组台内滩与台缘滩沉积特征差异及对储层的控制. 石油学报, 32: 70-75
[8]  李忠权, 潘懋, 萧德铭, 等. 2001. 四川盆地拉张-挤压构造环境探讨. 北京大学学报(自然科学版), 37: 87-93
[9]  廖国兴. 1991. 试论自流井构造东头嘉陵江组三段浅层天然气开发前景. 四川地质学报, 11: 127-132
[10]  林畅松. 2009. 沉积盆地的层序和沉积充填结构及过程响应. 沉积学报, 27: 849-862
[11]  林耀庭, 何金权, 叶茂才. 2003. 论四川盆地下中三叠统成盐模式及找钾方向. 化工矿产地质, 25: 76-81
[12]  林耀庭, 何金权. 2005. 四川盆地下中三叠统盐系地层古地磁研究与成盐条件有关问题探讨. 盐湖研究, 13: 1-4
[13]  刘宏, 谭秀成, 周彦, 等. 2007. 颗粒碳酸盐岩测井相及其对滩相储层的指示意义. 天然气地球科学, 18: 527-530
[14]  刘伊克, 常旭. 2003. 四川盆地埋藏沉降史模拟. 地球物理学报, 46: 203-208
[15]  牟传龙, 许效松. 2010. 华南地区早古生代沉积演化与油气地质条件. 沉积与特提斯地质, 30: 24-29
[16]  谭秀成, 刘晓光, 陈景山, 等. 2009. 磨溪气田嘉二段陆表海碳酸盐岩台地内滩体发育规律. 沉积学报, 27: 995-999
[17]  谭秀成, 罗冰, 李凌, 等. 2008. 碳酸盐岩台地多旋回沉积小层精细划分对比方法研究—以川中磨溪构造嘉二段为例. 地层学杂志, 32: 207-212
[18]  唐泽尧, 杨天泉. 1994. 卧龙河气田地质特征. 天然气勘探与开发, 16: 1-12
[19]  翟光明. 1989. 中国石油地质志(卷十. 四川油气区). 北京: 石油工业出版社
[20]  张闻林, 韩应钧. 1998. 四川盆地中部雷一1中亚段成藏条件分析. 天然气工业, 18: 20-23
[21]  周进高, 辛勇光, 谷明峰, 等. 2010. 四川盆地中三叠统雷口坡组天然气勘探方向. 天然气工业, 30: 16
[22]  朱忠发. 1992. 扬子板块东南边缘三叠纪巨型浅滩.岩相古地理文集. 北京: 地质出版社
[23]  曾德铭, 王兴志, 石新, 等. 2010. 四川盆地西北部中三叠统雷口坡组滩体及储集. 沉积学报, 28: 42
[24]  曾允孚, 郑荣才. 1984. 湘西凤凰长坪清虚洞期碳酸盐重力流沉积及深水蒸发岩. 成都理工大学学报(自然科学版), 4: 13-20
[25]  Burchette T P, Wright V P, Faulkner T J. 1990. Oolitic sandbody depositional models and geometries, Mississippian of southwest Britain: Implications for petroleum exploration in carbonate ramp settings. Sediment Geol, 68: 87-115
[26]  ?adjenovi? D, Kilibarda Z, Radulovi? N. 2008. Late Triassic to Late Jurassic evolution of the Adriatic Carbonate Platform and Budva Basin, Southern Montenegro. Sediment Geol, 204: 1-17
[27]  Hofmann A, Dirks P H G M, Jelsma H A. 2004. Shallowing-upward carbonate cycles in the Bellingwe greenstone belt, Zimbabwe: A recod of archean sea-level oscillations. J Sediment Res, 74: 64-81
[28]  Kostic B, Aigner T. 2004. Sedimentary and poroperm anatomy of shoal-water carbonates (Muschelkalk, South-German Basin): An outcrop-analogue study of inter-well spacing scale. Facies, 50: 113-131
[29]  Llinas J C. 2003. Reservoir facies in the upper Jurassic Smackover formation and identification of the factors that control their distribution in the Vocation Field structure, Manila Subbasin, eastern gulf coastal plain. In: 2003 AAPG Annual Convention with SEPM. Chidsey: Annual Meeting Expanded Abstracts, 12: 106
[30]  Palermo D, Aigner T, Nardon S, et al. 2010. Three-dimensional facies modeling of carbonate sand bodies: Outcrop analog study in an epicontinental basin(Triassic, southwest Germany). AAPG Bull, 94: 475-512
[31]  Rankey E C. 1997. Relations between relative changes in sea level and climate shifts: Pennsylvanian-Permian mixed carbonate-siliciclastic strata, western United States. GSA Bull, 109: 1089-1100
[32]  Ruf M, Aigner T. 2004. Facies and poroperm characteristics of a carbonate shoal(Muschelkalk, South German Basin): A reservoir analogue investigation. J Pet Geol, 27: 215-239
[33]  Strasser A, Vedrine S. 2009. Controls on facies mosaics of carbonate platforms: A case study from the Oxfordian of the Swiss Jura. In: Swart P K, Eberli G P, McKenzie J A, eds. Perspectives in Carbonate Geology: A Tribute to the Career of Robert Nathan Ginsburg. Salt Lake City: Geol Soc Amer, 41: 199-213
[34]  Wright V P, Azerêdo A C. 2006. How relevant is the role of macrophytic vegetation in controlling peritidal carbonate facies? Clues from the Upper Jurassic of Portugal. Sediment Geol, 186: 147-156c Amer, 41: 199-213
[35]  Trela W. 2005. Condensation and phosphatization of the middle and upper Ordovician limestones on the Malopolska Block(Poland): Response to paleoceanographic conditions. Sediment Geol, 178: 219-236
[36]  Tucker M E, Wright V P. 1990. Carbonate Sedimentology. Oxford: Blackwell Science. 314-364
[37]  Worsley D, Baarli B G, Howe M P A, et al. 2011. New data on the Bruflat Formation and the Llandovery/Wenlock transition in the Oslo Region, Norway. Norw J Geol, 91: 101-120
[38]  Wright V P, Azerêdo A C. 2006. How relevant is the role of macrophytic vegetation in controlling peritidal carbonate facies? Clues from the Upper Jurassic of Portugal. Sediment Geol, 186: 147-156 ?

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133