Benn D I, Warren C R, Mottram R H. 2007. Calving processes and the dynamics of calving glaciers. Earth-Sci Rev, 3-4: 143-179
[3]
Cook S, Zwinger T, Rutt I, et al. 2012. Testing the effect of water in crevasses on a physically based calving model. Ann Glaciol, 60: 90-96
[4]
De Boor C. 2001. A Practical Guide to Splines (revised ed.). New York: Springer
[5]
Delaney A J, Arcone S A, O''Bannon A, et al. 2004. Crevasse detection with GPR across the Ross Ice Shelf, Antarctica. In: 10th Internternationol Conferences on Ground Penetrating Radar. Delft
[6]
Fricker H, Young N, Coleman R, et al. 2005. Multi-year monitoring of rift propagation on the Amery Ice Shelf, East Antarctica. Geophys Res Lett, 2: L02502, doi: 10.1029/2004GL021036
[7]
Fricker H A, Allison I, Craven M, et al. 2002. Redefinition of the Amery Ice Shelf, East Antarctica, grounding zone. J Geophys Res, B5, doi: 10.1029/2001JB000383
[8]
Fricker H A, Coleman R, Padman L, et al. 2009. Mapping the grounding zone of the Amery Ice Shelf, East Antarctica using InSAR, MODIS and ICESat. Antarct Sci, 5: 515-532
[9]
Glasser N, Scambos T. 2008. A structural glaciological analysis of the 2002 Larsen B ice-shelf collapse. J Glaciol, 184: 3-16
[10]
Glasser N F, Kulessa B, Luckman A, et al. 2009. Surface structure and stability of the Larsen C ice shelf, Antarctic Peninsula. J Glaciol, 191: 400-410
[11]
Hambrey M J, Dowdeswell J A. 1994. Flow regime of the Lambert Glacier-Amery Ice Shelf system, Antarctica: Structural evidence from Landsat imagery. Ann Glaciol, 1: 401-406
[12]
Harper J, Humphrey I. 1998. Crevasse patterns and the strain-rate tensor: A high-resolution comparison. J Glaciol, 146: 68-76
[13]
Hulbe C L, LeDoux C, Cruikshank K. 2010. Propagation of long fractures in the Ronne Ice Shelf, Antarctica, investigated using a numerical model of fracture propagation. J Glaciol, 197: 459-472
[14]
Jacobs S S, Helmer H H, Doake C S M, et al. 1992. Melt of ice shelves and the mass balance of Antarctica. J Glaciol, 130: 375-387
[15]
Koh G, Lever J H, Arcone S A, et al. 2010. Autonomous FMCW radar survey of Antarctic shear zone. In: Ground Penetrating Radar (GPR). 13th International Conference on IEEE. 1-5
[16]
MacAyeal D, Bindschadler R, Jezek K, et al. 1988. Can relict crevasse plumes on Antarctic ice shelves reveal a history of ice-stream fluctuation. Ann Glaciol, 11: 77-82
[17]
Mercer J, Lever J, Newman S, et al. 2010. Crevasse detection and avoidance for safe traversing on the dynamic and annually changing margin of the greenland ice sheet. In: American Geophysical Union, Fall Meeting 2010: abstract #C23B-0624
[18]
Mottram R H, Benn D I. 2009. Testing crevasse-depth models: A field study at Breiethamerkurjokull, Iceland. J Glaciol, 192: 746-752
[19]
Nath P, Vaughan D. 2003. Subsurface crevasse formation in glaciers and ice sheets. J Geophys Res, 108, doi: 10.1029/2001JB000453
[20]
Rignot E, Bamber J L, Van den Broeke M R, et al. 2008. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geosci, 2: 106-110
[21]
Rist M, Sammonds P, Murrell S, et al. 1999. Experimental and theoretical fracture mechanics applied to Antarctic ice fracture and surface crevassing. J Geophys Res, B2: 2973-2987
[22]
Scambos T, Fricker H A, Liu C C, et al. 2009. Ice shelf disintegration by plate bending and hydro-fracture: Satellite observations and model results of the 2008 Wilkins ice shelf break-ups. Earth Planet Sci Lett, 1-4: 51-60
[23]
Scambos T, Haran T, Fahnestock M, et al. 2007. MODIS-based Mosaic of Antarctica (MOA) data sets: Continent-wide surface morphology and snow grain size. Remote Sens Environ, 2-3: 242-257
[24]
Scambos T, Hulbe C, Fahnestock M. 2003. Climate-induced ice shelf disintegration in the Antarctic Peninsula. Antarct Res Ser, 79: 79-92
[25]
Shuman C, Zwally H, Schutz B, et al. 2006. ICESat Antarctic elevation data: Preliminary precision and accuracy assessment. Geophys Res Lett, 7: L07501
[26]
Taurisano A, Tronstad S, Brandt O, et al. 2006. On the use of ground penetrating radar for detecting and reducing crevasse-hazard in Dronning Maud Land, Antarctica. Cold Reg Sci Technol, 3: 166-177
[27]
Van der Veen C. 1999. Crevasses on glaciers. Polar Geography, 3: 213-245
[28]
Vaughan D G. 1993. Relating the occurrence of crevasses to surface strain rates. J Glaciol, 132: 255-266
[29]
Vornberger P, Whillans I. 1990. Crevasse deformation and examples from Ice Stream B, Antarctica. J Glaciol, 122: 3-10
[30]
Wang X, Cheng X, Gong P, et al. 2011. Earth science applications of ICESat/GLAS: A review. Int J Remote Sens, 23: 8837-8864
[31]
Wang X, Cheng X, Li Z, et al. 2012. Lake water footprint identification from time-series ICESat/GLAS data. IEEE Geosci Remote Sensing, 9: 333-337
[32]
Weertman J. 1973. Can a water-filled crevasse reach the bottom surface of a glacier? IASH Publ, 95: 139-145
[33]
Xu T, Yang W, Liu Y, et al. 2011. Crevasse detection in antarctica using ASTER images. In: Kamel M, Campilho A, eds. Image Analysis and Recognition. Heidelberg: Springer. 370-379
[34]
Young N W, Hyland G. 2002. Velocity and strain rates derived from InSAR analysis over the Amery Ice Shelf, East Antarctica. Ann Glaciol, 1: 228-234
[35]
Zamora R, Casassa G, Rivera A, et al. 2007. Crevasse detection in glaciers of southern Chile and Antarctica by means of ground penetrating radar. IAHS Publ Ser Proc Reports, 318: 152-162
[36]
Zwally H, Schutz B, Abdalati W, et al. 2002. ICESat''s laser measurements of polar ice, atmosphere, ocean, and land. J Geodyn, 3: 405-445