全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

卫星激光测高探测极地冰架表面裂隙方法

, PP. 302-312

Keywords: 激光测高,ICESat-1/GLAS,裂隙,深度探测,冰架

Full-Text   Cite this paper   Add to My Lib

Abstract:

?冰架崩解是南极洲物质损耗的主要途径,崩解是应力作用引起的裂隙(或裂缝)传播的结果,裂隙位置和深度的探测是理解崩解机理过程的重要基础.本文提出了一种利用卫星激光测高ICESat-1/GLAS高程数据产品提取冰架表面冰裂隙的方法,并以南极洲埃默里冰架为例验证了这种方法探测裂隙位置的准确性和深度探测精度.同时,基于提取的裂隙点深度分布特征提出了裂隙峰值应力点的探测方法,可用于追踪冰裂隙初始裂口位置和探测导致冰架崩解的高危区.利用2003~2008年间16个运行时期内132条ICESat-1/GLAS高程轨迹线分析了埃默里冰架冰裂隙深度的时空分布和裂隙峰值应力点的空间分布.结果显示,探测到的裂隙点深度在2.0~31.7m均在海平面以上;裂隙深度变化未显示出随时间推移和冰流移动而增加的趋势,说明平流移动到冰架前缘的裂隙基本不会直接导致冰架的崩解;冰架局部应力集中区主要分布在冰流的缝合区内.

References

[1]  鄂栋臣, 沈强, 徐莹, 等. 2009. 基于ASTER立体数据和ICESat/GLAS测高数据融合高精度提取南级地区地形信息. 中国科学D辑: 地球科学, 39: 351-359
[2]  Benn D I, Warren C R, Mottram R H. 2007. Calving processes and the dynamics of calving glaciers. Earth-Sci Rev, 3-4: 143-179
[3]  Cook S, Zwinger T, Rutt I, et al. 2012. Testing the effect of water in crevasses on a physically based calving model. Ann Glaciol, 60: 90-96
[4]  De Boor C. 2001. A Practical Guide to Splines (revised ed.). New York: Springer
[5]  Delaney A J, Arcone S A, O''Bannon A, et al. 2004. Crevasse detection with GPR across the Ross Ice Shelf, Antarctica. In: 10th Internternationol Conferences on Ground Penetrating Radar. Delft
[6]  Fricker H, Young N, Coleman R, et al. 2005. Multi-year monitoring of rift propagation on the Amery Ice Shelf, East Antarctica. Geophys Res Lett, 2: L02502, doi: 10.1029/2004GL021036
[7]  Fricker H A, Allison I, Craven M, et al. 2002. Redefinition of the Amery Ice Shelf, East Antarctica, grounding zone. J Geophys Res, B5, doi: 10.1029/2001JB000383
[8]  Fricker H A, Coleman R, Padman L, et al. 2009. Mapping the grounding zone of the Amery Ice Shelf, East Antarctica using InSAR, MODIS and ICESat. Antarct Sci, 5: 515-532
[9]  Glasser N, Scambos T. 2008. A structural glaciological analysis of the 2002 Larsen B ice-shelf collapse. J Glaciol, 184: 3-16
[10]  Glasser N F, Kulessa B, Luckman A, et al. 2009. Surface structure and stability of the Larsen C ice shelf, Antarctic Peninsula. J Glaciol, 191: 400-410
[11]  Hambrey M J, Dowdeswell J A. 1994. Flow regime of the Lambert Glacier-Amery Ice Shelf system, Antarctica: Structural evidence from Landsat imagery. Ann Glaciol, 1: 401-406
[12]  Harper J, Humphrey I. 1998. Crevasse patterns and the strain-rate tensor: A high-resolution comparison. J Glaciol, 146: 68-76
[13]  Hulbe C L, LeDoux C, Cruikshank K. 2010. Propagation of long fractures in the Ronne Ice Shelf, Antarctica, investigated using a numerical model of fracture propagation. J Glaciol, 197: 459-472
[14]  Jacobs S S, Helmer H H, Doake C S M, et al. 1992. Melt of ice shelves and the mass balance of Antarctica. J Glaciol, 130: 375-387
[15]  Koh G, Lever J H, Arcone S A, et al. 2010. Autonomous FMCW radar survey of Antarctic shear zone. In: Ground Penetrating Radar (GPR). 13th International Conference on IEEE. 1-5
[16]  MacAyeal D, Bindschadler R, Jezek K, et al. 1988. Can relict crevasse plumes on Antarctic ice shelves reveal a history of ice-stream fluctuation. Ann Glaciol, 11: 77-82
[17]  Mercer J, Lever J, Newman S, et al. 2010. Crevasse detection and avoidance for safe traversing on the dynamic and annually changing margin of the greenland ice sheet. In: American Geophysical Union, Fall Meeting 2010: abstract #C23B-0624
[18]  Mottram R H, Benn D I. 2009. Testing crevasse-depth models: A field study at Breiethamerkurjokull, Iceland. J Glaciol, 192: 746-752
[19]  Nath P, Vaughan D. 2003. Subsurface crevasse formation in glaciers and ice sheets. J Geophys Res, 108, doi: 10.1029/2001JB000453
[20]  Rignot E, Bamber J L, Van den Broeke M R, et al. 2008. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geosci, 2: 106-110
[21]  Rist M, Sammonds P, Murrell S, et al. 1999. Experimental and theoretical fracture mechanics applied to Antarctic ice fracture and surface crevassing. J Geophys Res, B2: 2973-2987
[22]  Scambos T, Fricker H A, Liu C C, et al. 2009. Ice shelf disintegration by plate bending and hydro-fracture: Satellite observations and model results of the 2008 Wilkins ice shelf break-ups. Earth Planet Sci Lett, 1-4: 51-60
[23]  Scambos T, Haran T, Fahnestock M, et al. 2007. MODIS-based Mosaic of Antarctica (MOA) data sets: Continent-wide surface morphology and snow grain size. Remote Sens Environ, 2-3: 242-257
[24]  Scambos T, Hulbe C, Fahnestock M. 2003. Climate-induced ice shelf disintegration in the Antarctic Peninsula. Antarct Res Ser, 79: 79-92
[25]  Shuman C, Zwally H, Schutz B, et al. 2006. ICESat Antarctic elevation data: Preliminary precision and accuracy assessment. Geophys Res Lett, 7: L07501
[26]  Taurisano A, Tronstad S, Brandt O, et al. 2006. On the use of ground penetrating radar for detecting and reducing crevasse-hazard in Dronning Maud Land, Antarctica. Cold Reg Sci Technol, 3: 166-177
[27]  Van der Veen C. 1999. Crevasses on glaciers. Polar Geography, 3: 213-245
[28]  Vaughan D G. 1993. Relating the occurrence of crevasses to surface strain rates. J Glaciol, 132: 255-266
[29]  Vornberger P, Whillans I. 1990. Crevasse deformation and examples from Ice Stream B, Antarctica. J Glaciol, 122: 3-10
[30]  Wang X, Cheng X, Gong P, et al. 2011. Earth science applications of ICESat/GLAS: A review. Int J Remote Sens, 23: 8837-8864
[31]  Wang X, Cheng X, Li Z, et al. 2012. Lake water footprint identification from time-series ICESat/GLAS data. IEEE Geosci Remote Sensing, 9: 333-337
[32]  Weertman J. 1973. Can a water-filled crevasse reach the bottom surface of a glacier? IASH Publ, 95: 139-145
[33]  Xu T, Yang W, Liu Y, et al. 2011. Crevasse detection in antarctica using ASTER images. In: Kamel M, Campilho A, eds. Image Analysis and Recognition. Heidelberg: Springer. 370-379
[34]  Young N W, Hyland G. 2002. Velocity and strain rates derived from InSAR analysis over the Amery Ice Shelf, East Antarctica. Ann Glaciol, 1: 228-234
[35]  Zamora R, Casassa G, Rivera A, et al. 2007. Crevasse detection in glaciers of southern Chile and Antarctica by means of ground penetrating radar. IAHS Publ Ser Proc Reports, 318: 152-162
[36]  Zwally H, Schutz B, Abdalati W, et al. 2002. ICESat''s laser measurements of polar ice, atmosphere, ocean, and land. J Geodyn, 3: 405-445

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133