全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

鲁西北平原玉米地涡度相关臭氧通量日变化特征

, PP. 292-301

Keywords: 臭氧通量,沉积速度,臭氧浓度,涡度相关,农田生态系统,鲁西北平原

Full-Text   Cite this paper   Add to My Lib

Abstract:

?近地面高浓度臭氧(O3)对植物生长发育和光合作用等都有副作用.基于O3通量(特别是植物气孔吸收)的评价指标被认为比基于O3浓度的指标能更好地反应O3对生态系统的影响.本文报道了利用涡度相关技术进行农田生态系统(玉米地)O3通量的观测结果,初步分析了该地区夏玉米地上O3浓度、沉积速度(Vd)和臭氧通量(Fo)的日变化规律及其与生态环境条件的关系.结果表明:(1)观测期间(2011年8月9日至9月28日),30min平均O3浓度存在明显的日变化规律,其最低值(16.5nLL-1)和最高值(60.1nLL-1)的出现时间分别为6:30和16:00左右.白天(6:00~18:00)和夜间(18:00~6:00,下同)的O3浓度分别为(39.8±23.1)和(20.7±14.1)nLL-1(平均值±标准差),瞬时O3浓度最大值为97.5nLL-1.O3浓度受太阳辐射和温度影响比较明显.(2)无论白天还是夜间,近地层O3都是向下运动的.Vd日变化规律表现为夜间小而平稳、上午快速上升、中午前后大而平稳以及下午快速下降的过程.白天和夜间的Vd平均值分别为0.29和0.09cms-1,最大值为0.81cms-1.白天Vd的大小受作物生长期的影响,而Vd的日变化受太阳辐射和相对湿度的影响最为明显.(3)O3通量的日变化受O3浓度和Vd的共同影响,白天和夜间的平均O3通量(Fo)分别为-317.7和-70.2ngm-2s-1.Fo与CO2通量(Fc)和潜热通量(LE)的相关关系比较显著,通过比较白天和晚上Vd的差别,可以判断白天的气孔吸收是玉米地上大气O3主要的汇.

References

[1]  安俊琳, 杭一纤, 朱彬, 等. 2010. 南京北郊大气臭氧浓度变化特征. 生态环境学报, 19: 1383-1386
[2]  邓雪娇, 周秀骥, 吴兑, 等. 2011. 珠江三角洲大气气溶胶对地面臭氧变化的影响. 中国科学: 地球科学, 41: 93-102
[3]  任巍, 田汉勤. 2007. 臭氧污染与陆地生态系统生产力. 植物生态学报, 31: 219-230
[4]  唐文苑, 赵春生, 耿福海, 等. 2009. 上海地区臭氧周末效应研究. 中国科学D辑: 地球科学, 39: 99-105
[5]  王春乙, 白月明. 2007. 臭氧和气溶胶浓度变化对农作物的影响研究. 北京: 气象出版社
[6]  许宏, 杨景成, 陈圣宾, 等. 2007. 植物的臭氧污染胁迫效应研究进展. 植物生态学报, 31: 1205-1213
[7]  姚芳芳, 王效科, 陈展, 等. 2008. 农田冬小麦生长和产量对臭氧动态暴露的响应. 植物生态学报, 32: 212-219
[8]  于贵瑞, 伏玉玲, 孙晓敏, 等. 2006. 中国陆地生态系统通量观测研究网络(ChinaFLUX)的研究进展及其发展思路. 中国科学D辑: 地球科学, 36(增刊Ⅰ): 1-21
[9]  于贵瑞, 孙晓敏. 2006. 陆地生态系统通量观测的原理和方法. 北京: 高等教育出版社
[10]  郑飞翔, 王效科, 侯培强, 等. 2011. 臭氧胁迫对水稻生长以及C、N、S元素分配的影响. 生态学报, 31: 1479-1486
[11]  郑有飞, 胡程达, 吴荣军, 等. 2010. 地表臭氧浓度增加对冬小麦光合作用的影响. 生态学报, 30: 847-855
[12]  朱治林, 孙晓敏, 赵风华, 等. 2012. 鲁西北平原冬小麦田臭氧浓度变化特征及对产量的潜在影响和机理分析. 植物生态学报, 36: 313-323
[13]  Avnery S, Mauzerall D L, Liu J F, et al. 2011. Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmos Environ, 45: 2284-2296
[14]  Baldocchi D, Hicks B, Camara P. 1987. A canopy stomatal resistance model for gaseous deposition to vegetated surfaces. Atmos Environ, 21: 91-101
[15]  Baldocchi D, Meyers T. 1998. On using eco-physiological, micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and trace gas fluxes over vegetation: A perspective. Agric For Meteorol, 90: 1-25
[16]  Crutzen P J, Lawrence M G, Poschel U, 1999. On the background photochemistry of tropospheric ozone. Tellus, 51: 123-146
[17]  Coyle M, Nemitz E, Storeton W R, et al. 2009. Measurements of ozone deposition to a potato canopy. Agric For Meteorol, 149: 655-666
[18]  Duenas C, Fernandez M C, Canete S, et al. 2002. Assessment of ozone variations and meteorological effects in an urban area in the Mediterranean Coast. Sci Total Environ, 299: 97-113
[19]  Feng Z W, Jin M H, Zhang F Z, et al. 2003. Effects of ground-level ozone O3 pollution on the yields of rice and winter wheat in the Yangtze River Delta. J Environ Sci, 15: 360-362
[20]  Fowler D, Pilegaard K, Sutton M A, et al. 2009. Atmospheric composition change: Ecosystems-Atmosphere interactions. Atmos Environ, 43: 5193-5267
[21]  Fuhrer J, Skarby L, Ashmore M R. 1997. Critical levels for ozone effects on vegetation in Europe. Environ Pollut, 97: 91-106
[22]  Pleijel H, Danielssona H, Ojanper K. 2004. Relationships between ozone exposure and yield loss in European wheat and potato—A comparison of concentration-and flux-based exposure indices. Atmos Environ, 38: 2259-2269
[23]  Rummel U, Ammann1 C, Kirkman1 G A, et al. 2007. Seasonal variation of ozone deposition to a tropical rain forest in southwest Amazonia. Atmos Chem Phys, 7: 5415-5435
[24]  Sorimachi A, Sakamoto K, Ishihara H, et al. 2003. Measurements of sulfur dioxide and ozone dry deposition over short vegetation in northern China—A preliminary study. Atmos Environ, 37: 3157-3166
[25]  Tong L, Wang X K, Geng C M, et al. 2011. Diurnal and phenological variations of O3 and CO2 fluxes of rice canopy exposed to different O3 concentrations. Atmos Environ, 45: 5621-5631
[26]  Uddling J, Gunthardt M S, Matyssek R. 2004. Biomass reduction of juvenile birch is more strongly related to stomatal uptake of ozone than to indices based on external exposure. Atmos Environ, 38: 4709-4719
[27]  Vingarzan R. 2004. A review of surface ozone background levels and trends. Atmos Environ, 38: 3431-3442
[28]  Wesely M L, Hicks B B. 2000. A review of the current status of knowledge on dry deposition. Atmos Environ, 34: 2261-2282
[29]  Xu X, Lin W, Wang T, et al. 2008. Long-term trend of surface ozone at a regional background station in eastern China 1991-2006: Enhanced variability. Atmos Chem Phys, 8: 2595-2607
[30]  Zahn A, Weppner J, Widmann H, et al. 2012. A fast and precise chemiluminescence ozone detector for eddy flux and airborne application. Atmos Meas Tech, 5: 363-375ozone flux measurements made by dry chemiluminescence fast response analysers. Atmos Meas Tech, 3: 163-176
[31]  Musselman R C, Lefohn A S, Massman W J, et al. 2006. A critical review and analysis of the use of exposure-and flux-based ozone indices for predicting vegetation effects. Atmos Environ, 40: 1869-1888
[32]  Padro J. 1996. Summary of ozone dry deposition velocity measurements and model estimates over vineyard, cotton, grass and deciduous forest in summer. Atmos Environ, 30: 2363-2369
[33]  Pederson J R, Massman W J, Mahrt L, et al. 1995. California ozone deposition experiment-Methods, results and Opportunities. Atmos Environ, 29: 3115-3132
[34]  Pleijel H, Danielssona H, Ojanper K. 2004. Relationships between ozone exposure and yield loss in European wheat and potato—A comparison of concentration- and flux-based exposure indices. Atmos Environ, 38: 2259-2269
[35]  Rummel U, Ammann1 C, Kirkman1 G A, et al. 2007. Seasonal variation of ozone deposition to a tropical rain forest in southwest Amazonia. Atmos Chem Phys, 7: 5415-5435
[36]  Sorimachi A, Sakamoto K, Ishihara H, et al. 2003. Measurements of sulfur dioxide and ozone dry deposition over short vegetation in northern China—A preliminary study. Atmos Environ, 37: 3157-3166
[37]  Tong L, Wang X K, Geng C M, et al. 2011. Diurnal and phenological variations of O3 and CO2 fluxes of rice canopy exposed to different O3 concentrations. Atmos Environ, 45: 5621-5631
[38]  Uddling J, Gunthardt M S, Matyssek R. 2004. Biomass reduction of juvenile birch is more strongly related to stomatal uptake of ozone than to indices based on external exposure. Atmos Environ, 38: 4709-4719
[39]  Vingarzan R. 2004. A review of surface ozone background levels and trends. Atmos Environ, 38: 3431-3442
[40]  Wesely M L, Hicks B B. 2000. A review of the current status of knowledge on dry deposition. Atmos Environ, 34: 2261-2282
[41]  Xu X, Lin W, Wang T, et al. 2008. Long-term trend of surface ozone at a regional background station in eastern China 1991-2006: Enhanced variability. Atmos Chem Phys, 8: 2595-2607
[42]  Zahn A, Weppner J, Widmann H, et al. 2012. A fast and precise chemiluminescence ozone detector for eddy flux and airborne application. Atmos Meas Tech, 5: 363-375 ?
[43]  丁国安, 徐晓斌, 罗超, 等. 2001. 中国大气本底条件下不同地区地面臭氧特征. 气象学报, 59: 88-96
[44]  金赛花, 樊曙先, 王自发, 等. 2008. 青海瓦里关地面臭氧浓度的变化特征. 中国环境科学, 28: 198-202
[45]  梁晶, 曾青, 朱建国, 等. 2010. 植物对近地层高浓度臭氧响应的评价指标研究进展. 中国生态农业学报, 18: 440-445
[46]  刘洁, 张小玲, 张晓春, 等. 2006. 上甸子本底站地面臭氧变化特征及影响因素. 环境科学研究, 19: 19-25
[47]  Gerosa G, Cieslik S, Ballarin D A. 2003. Micrometeorological determination of time-integrated stomatal ozone fluxes over wheat: A case study in Northern Italy. Atmos Environ, 37: 777-788
[48]  Gerosa G, Marzuoli R, Cieslik S, et al. 2004. Stomatal ozone fluxes over a barley field in Italy. "Effective exposure" as a possible link between exposure-and flux-based approaches. Atmos Environ, 38: 2421-2432
[49]  Gerosa G, Derghi F, Cieslik S. 2007. Comparison of different algorithms for stomatal ozone flux determination from micrometeorological measurements. Water Air Soil Pollut, 179: 309-321
[50]  Gerosa G, Marzuoli R, Rossini M, et al. 2009. A flux-based assessment of the effects of ozone on foliar injury, photosynthesis and yield of bean (Phaseolus vulgaris L. cv. Borlotto Nano Lingua di Fuoco) in open-top chambers. Environ Pollut, 157: 1727-1736
[51]  Jaffe D, Ray J. 2007. Increase in surface ozone at rural sites in the western US. Atmos Environ, 41: 5452-5463
[52]  Krzyscin J, Krizan P, Jaros?awski J, et al. 2007. Long-term changes in the tropospheric column ozone from the ozone soundings over Europe. Atmos Environ, 41: 606-616
[53]  Lamaud E, Loubet B, Irvine M, et al. 2009. Partitioning of ozone deposition over a developed corn crop between stomatal and non-stomatal uptakes using eddy-covariance flux measurements and modelling. Agric For Meteorol, 149: 1385-1396
[54]  Lee X, Massman W, Law B. 2004. Handbook of Micrometeorology—A Guide for Surface Flux Measurement and Analysis. Dordrecht: Kluwer Academic Publishers
[55]  Mikkelsen T N, Ro-Poulsen H, Pilegaard K, et al. 2000. Ozone uptake by an evergreen forest canopy: Temporal variation and possible mechanisms. Environ Pollut, 109: 423-429
[56]  Mills G, Buse A, Gimeno B, et al. 2007. A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmos Environ, 41: 2630-2643
[57]  Mills G, Pleijel H, Braun S, et al. 2011. New stomatal flux-based critical levels for ozone effects on vegetation. Atmos Environ, 45: 5064-5068
[58]  Muller J B, Percival C J, Gallagher M W, et al. 2010. Sources of uncertainty in eddy covariance ozone flux measurements made by dry chemiluminescence fast response analysers. Atmos Meas Tech, 3: 163-176
[59]  Musselman R C, Lefohn A S, Massman W J, et al. 2006. A critical review and analysis of the use of exposure-and flux-based ozone indices for predicting vegetation effects. Atmos Environ, 40: 1869-1888
[60]  Padro J. 1996. Summary of ozone dry deposition velocity measurements and model estimates over vineyard, cotton, grass and deciduous forest in summer. Atmos Environ, 30: 2363-2369
[61]  Pederson J R, Massman W J, Mahrt L, et al. 1995. California ozone deposition experiment-Methods, results and Opportunities. Atmos Environ, 29: 3115-3132

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133