全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

北半球春季平流层最后增温过程及其年际和年代际变化特征

, PP. 333-342

Keywords: 平流层最后增温事件,爆发日期,波动特征,环流异常

Full-Text   Cite this paper   Add to My Lib

Abstract:

?利用1979~2010年NCEP-DOE2逐日再分析资料,以北半球春季平流层极夜急流核心纬带(65°~75°N)纬向平均纬向风最后一次转为东风的日期定义为春季平流层最后增温事件(SFW)的爆发日期,研究发现,SFW事件平均在4月中下旬发生,且由平流层高层向低层依次滞后,10hPa的SFW爆发平均超前50hPa约13天;爆发当日伴随纬向风场时间变率和行星波辐合的最大值,平流层环流实现由冬向夏的季节转换;过去32年以来SFW的爆发早晚具有显著的年际变化,最早的SFW事件发生在3月中旬,最晚的SFW事件在5月下旬才出现.合成分析表明,SFW爆发偏早(晚)年的春季,纬向风场由西风向东风的转变更为快速(缓慢),爆发前5天至爆发后5天,30hPa纬向风减小约20ms-1(5ms-1),伴随的平流层行星波活动也相对较强(弱);表现在环流异常场上,SFW爆发前后平流层极区环流异常呈反(同)位相分布,表明发生较早的SFW事件主要受波强迫驱动而伴随爆发性增温,而发生较晚的SFW事件则更反映了极涡的季节变化特征.无论SFW偏早还是偏晚年,爆发后极区平流层与对流层温度异常之间均呈反位相关系,反映了SFW爆发事件中的平流层-对流层动力耦合特征.另外,在20世纪90年代中期前后,SFW爆发日期还存在明显的年代际转折,90年代中期之前SFW平均发生日期较之后约偏早11天;与之相联系的是冬末、春初行星波活动在90年代中期之前偏强,而在90年代中期之后有偏弱趋势.

References

[1]  李琳, 李崇银, 谭言科, 等. 2010. 平流层爆发性增温对中国天气气候的影响及其在ENSO影响中的作用. 地球物理学报, 53: 1529-1542
[2]  陶诗言. 1964. 平流层大气环流及太阳活动对大气环流的影响的研究. 北京: 科学出版社. 27-45
[3]  魏科, 陈文, 黄荣辉. 2007. 北半球平流层极涡崩溃过程的动力诊断分析. 中国科学D辑: 地球科学, 37: 1110-1119
[4]  Andrews D G, Holton J R, Leovy C B. 1987. Middle Atmosphere Dynamics. San Diego: Academic Press. 489
[5]  Ayarzaguena B, Serrano E. 2009. Monthly characterization of the tropospheric circulation over the Euro-Atlantic area in relation with the timing of stratospheric final warmings. J Clim, 22: 6313-6324
[6]  Baldwin M P, Dunkerton T J. 2001. Stratospheric harbingers of anomalous weather regimes. Science, 294: 581-584
[7]  Baldwin M P, Stephenson D B, Thompson D W J, et al. 2003. Stratospheric memory and skill of extended-range weather forecasts. Science, 301: 636-640
[8]  Black R X, McDaniel B A, Robinson W A. 2006. Stratosphere-troposphere coupling during spring onset. J Clim, 19: 4891-4901
[9]  Black R X, Mcdaniel B A. 2007a. The dynamics of Northern Hemisphere stratospheric final warming events. J Atmos Sci, 64: 2932-2946
[10]  Black R X, Mcdaniel B A. 2007b. Interannual variability in the Southern Hemisphere circulation organized by stratospheric final warming events. J Atmos Sci, 64: 2968-2974
[11]  Cai M, Ren R C. 2007. Meridional and downward propagation of atmospheric circulation anomalies. Part I: Northern Hemisphere cold season variability. J Atmos Sci, 64: 1880-1901
[12]  Charlton A J, Polvani L M. 2007. A new look at stratospheric sudden warmings. Part Ⅰ: Climatology and modeling benchmarks. J Clim, 20: 449-469
[13]  Haigh J D, Roscoe H K. 2009. The final warming date of the Antarctic polar vortex and influences on its interannual variability. J Clim, 22: 5809-5819
[14]  Hardiman S C, Butchart N, Charlton-Perez A J, et al. 2011. Improved predictability of the troposphere using stratospheric final warmings. J Geophys Res, 116: D18113
[15]  Hu Y Y, Tung K K. 2002. Interannual and decadal variations of planetary wave activity, stratospheric cooling, and Northern Hemisphere annular mode. J Clim, 15: 1659-1673
[16]  Hu Y Y, Tung K K. 2003. Possible ozone-induced long-term changes in planetary wave activity in late winter. J Clim, 16: 3027-3038
[17]  Kanamttsu M, Ebisuzaki W, Woollen J, et al. 2002. NCEP-DOE AMIP-II Reanalysis (R-2). Bull Amer Meteorol Soc, 79: 61-78
[18]  Labitzke K, Naujokat B. 2000. The lower Arctic stratosphere in winter since 1952. SPARC Newletter, 15: 11-14
[19]  Limpasuvan V, Thompson D W J, Hartmann D L. 2004. The life cycle of the Northern Hemisphere sudden stratospheric warmings. J Clim, 17: 2584-2596
[20]  Nash E R, Newman P A, Rosenfield J E, et al. 1996. An objective determination of the polar vortex using Ertel''s potential vorticity. J Geophys Res, 101: 9471-9478
[21]  Ren R C, Cai M. 2007. Meridional and vertical out-of-phase relationships of temperature anomalies associated with the Northern Annular Mode variability. Geophys Res Lett, 34: L07704
[22]  Ren R C, Yang Y. 2012. Changes of the winter stratospheric circulation in CMIP5 scenarios simulated by the climate system model FGOALS-s2. Adv Atmos Sci, 29: 1374-1389
[23]  Shindell D T, Miller R L, Schmidt G A, et al. 1999. Simulation of recent northern winter climate trends by greenhouse-gas forcing. Nature, 399: 452-455
[24]  Shindell D T, Schmidt G A, Miller R L, et al. 2001. Northern Hemisphere winter climate response to greenhouse gas, ozone, solar, and volcanic forcing. J Geophys Res, 106: 7193-7210
[25]  Thompson D W J, Wallace J M. 1998. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett, 25: 1297-1300
[26]  Waugh D W, Randel W J. 1999. Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics. J Atmos Sci, 56: 1594-1613
[27]  Waugh D W, Randel W J, Pawson S, et al. 1999. Persistence of the lower stratospheric polar vortices. J Geophys Res, 104: 27191-27201
[28]  Waugh D W, Rong P P. 2002. Interannual variability in the decay of lower stratospheric Arctic vortices. J Meteorol Soc Jpn, 80: 997-1012
[29]  Zhou S T, Gelman M E, Miller A J, et al. 2000. An inter-hemisphere comparison of the persistent stratospheric polar vortex. Geophys Res Lett, 27: 1123-1126

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133