全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高压太阳电池阵诱发的航天器充电及放电机理

, PP. 43-51

Keywords: 高压太阳电池阵,等离子体,航天器充电,放电

Full-Text   Cite this paper   Add to My Lib

Abstract:

?介绍了关于高压太阳电池阵引发的充电和放电效应的机理、模型及测试结果.空间站等低轨道航天器由于采用高压太阳电池阵会诱发结构体带电,主要包括正常充电和快速充电现象,以国际空间站为研究对象在分析充电机理的基础上分别建立了快速充电的物理模型,计算得到典型环境下的快速充电脉冲特征以及正常充电电位幅度与观测结果十分吻合.结果表明,快速充电是由出地影瞬间高压电池阵的帆板电压的快速启动所驱动的,而环境等离子体对玻璃盖片的充电未能快速响应并及时堵塞帆板的电子收集通道,从而导致了悬浮电位瞬间快速上升;快速充电是一种非平衡的充电过程,当发展到平衡态时即表现为正常充电.高压电池阵诱发的放电则与电池阵的结构特征密切相关,在电池阵上“金属-介质-等离子体”构成的三结合部存在负电位梯度时会发生一次放电,若一次放电出现于存在高电压梯度的相邻电池串之间时会诱发二次放电,二者都依赖于电池的结构参数.通过实验研究了一次放电和二次放电的阈值条件及其对电池结构参数的依赖关系,结果表明采用宽电池间隙、涂RTV胶对减缓两种放电均有显著效果;但对于二次放电而言,RTV胶的使用在延缓二次放电的发生同时也增加了二次放电的严重性.

References

[1]  黄建国, 易忠, 孟立飞, 等. 2013a. 空间站快速充电事件的机理研究. 物理学报, (9): 574-581
[2]  黄建国, 易忠, 孟立飞, 等. 2013b. 空间站快速充电效应的物理过程及特征. 物理学报, (22): 445-451
[3]  Carruth M R, Schneider T, McCollum M, et al. 2001. ISS and space environment interactions without operating plasma contactor. In: 39th AIAA Aerospace Sciences Meeting & Exhibit 8-11 January 2001, Reno NV. AIAA-2001-0401
[4]  Cho M. 1992. Arcing on high voltage solar arrays in low earth orbit: Theory and computer particle simulation. Doctoral Dissertation. Cambridge: Massachusetts Institute of Technology
[5]  Cho M, Hastings D E. 1991. Dielectric charging processes and arcing rates of high voltage solar arrays. J Spacecr Rockets, 28: 698-706
[6]  Ferguson D C, Morton T L, Hillard G B. 2001. First results from the floating potential probe (FPP) on the International Space Station. In: 39th AIAA Aerospace Sciences Meeting & Exhibit 8-11 January 2001, Reno NV. AIAA 2001-0402
[7]  Ferguson D C, Craven P, Minow J I, et al. 2009. A theory for rapid charging events on the International Space Station. In: 1st AIAA Atmospheric and Space Environments Conference. San Antonio, Texas, 22-25 June 2009. 1-24
[8]  Grier N T. 1983. Plasma interaction experiment II: Laboratory and flight results. In: Spacecraft Environment Interactions Technology Conference. NASA CP-2359: 333-348
[9]  Grier N T, John S N. 1978. Plasma interaction experiment (PIX) flight results. Technology Report. Spacecraft Charging Technology. NASA CP-2071: 295-314
[10]  Guidice D A, Davis V A, Cutis H B, et al. 1997. Photovoltaic Array Space Power Plus Diagnostics (PASO Plus) Experiment. Technical Report. NASA, PL-TR-97-1013, Final Report
[11]  Hastings D E, Cho M, Kuninaka H. 1992a. Arcing rate for high voltage solar array: Theory, experiment and predictions. J Spacecr Rockets, 29: 538-554
[12]  Hastings D E, Weyl G, Kaufman D. 1992b. The threshold voltage for arcing on negatively biased solar arrays. J Spacecr Rockets, 27: 538-554
[13]  Huang J G, Yi Z, Zhao H, et al. 2014. Model for rapid-charging events for International Space Station. J Spacecr Rockets, 51: 11-15
[14]  Minow J I. 2010. Summary of 2006 to 2010 FPMU measurements of International Space Station frame potential variations. In: 11th Spacecraft Charging Technology Conference Albuquerque, New Mexico. 20-24
[15]  Rodgers D. 2004. Spacecraft plasma interaction guidelines and handbook. Version 0.3. European Space Agency, QinetiQ/KI/SPACE/HB042617, 30 September
[16]  Tribble A C. 1993. Low earth orbit plasma effect on spacecraft. In: 31st Aerospace Sciences Meetiong, 11-14 January 1993, Reno NV. AIAA93-0614

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133