全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同变形机制对无烟煤化学结构的影响

, PP. 34-42

Keywords: 无烟煤,次高温高压实验,镜质组反射率,镜质组反射率椭球,次生结构缺陷

Full-Text   Cite this paper   Add to My Lib

Abstract:

?为了探讨不同的变形机制对无烟煤化学结构的影响,从而深入研究构造煤的化学结构的改变与瓦斯突出之间的相互关系,本文采用沁水盆地南部晋城矿区的无烟煤进行了10组次高温高压实验,并且对实验前后样品进行了傅里叶变换红外光谱(FTIR)、激光拉曼光谱(Raman)和镜质组反射率(VR)的测试和分析.结果表明,除温度对煤化学结构影响较为明显外,应变速率对煤的化学结构也有明显影响.在较高应变速率(4×10-5s-1)下,煤主要表现为脆性变形,样品发育具有明显位移的主破裂面,煤化学结构总体变化规律不明显;随着应变速率的降低,韧性变形作用渐趋增强,应变能不断积累,导致煤大分子结构发生晶内位错、滑移,缩合芳环数量和次生结构缺陷数量亦随之增加,脂族和醚键氧等官能团相继裂解析出,形成分子量更低的小分子,产生CO气体.此外,变形实验后样品的Ro,max值均明显大于变形前样品,暗示构造变形作用促进了煤的变质作用,同时镜质组反射率椭球(VRI)是反映构造变形作用类型的有效指标.

References

[1]  高文华. 1993. 煤镜质组反射率各向异性特征在构造应力场分析中的应用. 湖南地质, 12: 81-85
[2]  郭崇涛. 1992. 煤化学. 北京: 化学工业出版社. 82-107
[3]  侯泉林, 李培军, 李继亮. 1995. 闽西南前陆褶皱冲断带. 北京: 地质出版社. 48-60
[4]  侯泉林, 李会军, 范俊佳, 等. 2012. 构造煤结构与煤层气赋存研究进展. 中国科学: 地球科学, 42: 1487-1495
[5]  姜波, 金法礼, 周强, 等. 1997. 煤镜质组反射率光性组构变形实验研究. 煤田地质与勘探, 25: 11-15
[6]  姜波, 秦勇, 琚宜文, 等. 2009. 构造煤化学结构演化与瓦斯特性耦合机理. 地学前缘, 16: 262-271
[7]  姜波, 秦勇, 金法礼. 1998. 高温高压下煤超微构造的变形特征. 地质科学, 33: 17-24
[8]  蒋建平, 高广运, 康继武. 2007. 镜质组反射率测试及其所反映的构造应力场. 地球物理学报, 50: 138-145
[9]  琚宜文, 姜波, 侯泉林, 等. 2005. 构造煤结构成分应力效应的傅立叶变换红外光谱研究. 光谱学与光谱分析, 25: 1216-1220
[10]  李小明, 曹代勇, 张守仁, 等. 2005. 构造煤与原生结构煤的显微傅立叶红外光谱特征对比研究. 中国煤田地质, 17: 9-11
[11]  曹代勇. 1990. 安徽淮北煤田推覆构造中煤镜质组反射率各向异性研究. 地质论评, 36: 334-340
[12]  曹代勇, 李小明, 魏迎春, 等. 2005. 构造煤与原生结构煤的热解成烃特征研究. 煤田地质与勘探, 33: 39-41
[13]  曹代勇, 李小明, 张守仁. 2006. 构造应力对煤化作用的影响—应力降解机制与应力缩聚机制. 中国科学D辑: 地球科学, 36: 59-68
[14]  段菁春, 庄新国, 何谋春. 2002. 不同变质程度煤的激光拉曼光谱特征. 地质科技情报, 21: 65-68
[15]  冯杰, 李文英, 谢克昌. 2002. 傅立叶红外光谱法对煤结构的研究. 中国矿业大学学报, 31: 362-366
[16]  李小诗, 琚宜文, 侯泉林, 等. 2011. 煤岩变质变形作用的谱学研究. 光谱学与光谱分析, 31: 2176-2181
[17]  林红, 琚宜文, 侯泉林, 等. 2009. 脆、韧性变形构造煤的激光Raman光谱特征及结构成分响应. 自然科学进展, 19: 1117-1125
[18]  杨光, 刘俊来, 马瑞. 2006. 沁水盆地煤岩高温高压实验变形特征. 吉林大学学报: 地球科学版, 36: 346-350
[19]  张小兵, 张子敏, 张玉贵. 2009. 力化学作用与构造煤结构. 中国煤炭地质, 21: 10-14
[20]  郑辙, 陈宣华. 1994. 煤基石墨的Raman光谱研究. 中国科学B辑, 24: 640-647
[21]  周建勋, 邵震杰, 王桂梁. 1993. 煤光性组构的实验变形研究. 科学通报, 38: 147-150
[22]  Bernard S, Beyssac O, Benzerara K, et al. 2010. XANES, Raman and XRD study of anthracene-based cokes and saccharose-based chars submitted to high-temperature pyrolysis. Carbon, 48: 2506-2516
[23]  Bustin R M, Ross J V, Moffat I. 1986. Vitrinite anisotropy under differential stress and high confining pressure and temperature: Preliminary observations. Int J Coal Geol, 6: 343-351
[24]  Chen Y Y, Maria M, Arndt S. 2012. Characterization of chemical functional groups in macerals across different coal ranksvia micro-FTIR spectroscopy. Int J Coal Geol, 104: 22-33
[25]  Georgakopoulos A, Iordanidis A, Kapina V. 2003. Study of low rank Greek coals using FTIR spectroscopy. Energy sources, 25: 995-1005
[26]  Guo Y, Bustin R M. 1998. FTIR spectroscopy and reflectance of modern charcoals and fungal decayed woods: Implicationsfor studies of inertinite in coals. Int J Coal Geol, 37: 29-53
[27]  Ibarra J, Muńoz E, Moliner R. 1996. FTIR study of the evolution of coal structure during the coalification process. Org Geochem, 24: 725-735
[28]  Jones J M, Murchison D G, Saleh S A. 1973. Reflectance anisotropy of vitrinites in some coal scares from the coal measures of Northumberland. P Yorks Geol Soc, 4: 515-526
[29]  Komorek J, Morga R. 2007. Evolution of optical properties of vitrinite, sporinite and semifusinite in response to heating under inert conditions. Int J Coal Geol, 71: 389-404
[30]  Levine J R, Davis A. 1984. Optical anisotropy of coals as an indicator of tectonic deformation, Broad Top coal field, Pennsylvania. Geol Soc Am Bull, 95: 100-108
[31]  Marques M, Suarez R I, Flores D, et al. 2009. Correlation between optical, chemical and micro-structural parameters of high-rank coals and graphite. Int J Coal Geol, 77: 377-382
[32]  Nakamizo M, Kammereck R, Walker Jr P L. 1974. Laser Raman studies on carbons. Carbon, 12: 259-267
[33]  Oluwadayo O S, Tobias H, Stephen F F. 2010. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy. Energy, 35: 5347-5353
[34]  Quirico E, Rouzaud J N, Bonal L, et al. 2005. Maturation grade of coals as revealed by Raman spectroscopy: Progress and problems. Spectro Acta Part A-Molec Biomolec Spectr, 61: 2368-2377
[35]  Ross J V, Bustin R M. 1997. Vitrinite anisotropy resulting from simple shear experiments at high temperature and high confining pressure. Int J Coal Geol, 33: 153-168
[36]  Scott A R, Kaiser W, Ayers W B. 1994. Thermogenic and secondary biogenic gases, SanJuan Basin, Colorado and new Mexico-Implications for coalbed gas producibility. AAPG Bull, 78: 1186-1209
[37]  Wilks K, Mastalerz M, Bustin R, et al. 1993. The role of shear strain in the graphitization of a high-volatile bituminous and an anthracitic coal. Int J Coal Geol, 22: 247-277
[38]  Xu R T, Li H J, Guo C C, et al. 2014. The mechanisms of gas generation during coal deformation: Preliminary observations. Fuel, 117: 326-330

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133