全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

波前弥合现象对地震层析成像的影响

, PP. 784-794

Keywords: 有限频,菲涅尔体层析成像,散射条件,地震反演,波前弥合

Full-Text   Cite this paper   Add to My Lib

Abstract:

?波前弥合是地震波传播过程中普遍存在的现象.本文利用声波方程高阶有限差分数值模拟技术精细刻画出波在均匀球状异常体中的传播过程.除再现了波前弥合现象外,本文同时在前人工作基础上总结了波在异常体中的传播特征,分析了波前弥合现象与地震波主频、异常体尺度之间的关系.通过对绕射波、透射波波前能量的定量对比,总结了波前弥合现象对地震层析成像的影响规律.文中指出,在强散射条件下,射线层析方法只能反演出高速异常体,有限频层析方法只能反演出大尺度异常体,低速小尺度异常体无法用基于射线理论或有限频理论的透射走时层析成像方法反演出来;最后通过地震层析成像理论模型实验对以上规律的正确性进行了验证.本文同时根据波前弥合对Banana-doughnut现象进行了解释,并对地震波的散射给出了新的理解.

References

[1]  4 Harris J M, Nolen-Hoeksema R C, Langan R T, et al. High-resolution crosswell imaging of a west Texas carbonate reservoir: Part 1-Project summary and interpretation. Geophysics, 1995, 60: 667–681??
[2]  5 Pulliam R J, Vasco D W, Johnson L R. Tomographic inversions for mantle P-wave velocity structure based on the minimization and norms of International Seismological Centre traveltime residuals. J Geophys Res, 1993, 98: 699–734??
[3]  6 Billette F, Lambaré G. Velocity macro-model estimation from seismic reflection data by stereo-tomography. Geophys J Int, 1998, 135: 671–680??
[4]  7 Aki K, Richards P G. Quantitative Seismology. 2nd ed. Herndon: University Science Books, 2002
[5]  8 洪学海, 朱介寿, 曹家敏, 等. 中国大陆地壳上地幔S 波品质因子三维层析成像. 地球物理学报, 2003, 46: 642–651
[6]  9 刘福田, 吴华. 中国大陆及其邻近地区的地震层析成象. 地球物理学报, 1989, 32: 281–291
[7]  10 Zhu X H, Sixta D P, Angstman B G. Tomostatics: Turning-ray tomography+static corrections. Leading Edge, 1992, 11: 15–23
[8]  31 Jocker J, Spetzler J, Smeulders D, et al. Validation of first-order diffraction theory for the traveltimes and amplitudes of propagating waves. Geophysics, 2006, 71: 167–177
[9]  32 Nolet G. A Breviary of Seismic Tomography, Chapter 4. Cambridge: Cambridge University Press, 2008
[10]  1 Sheriff R E, Geldart L P. Exploration Seismology. Cambridge: Cambridge University Press, 1982
[11]  2 Dziewonski A. Mapping the lower mantle: Determination of lateral heterogeneous in P-velocity up to degree and order 6. J Geophys Res, 1984, 89: 5929–5952??
[12]  3 Nolet G. Seismic wave propagation and seismic tomography. In: Nolet G, ed. Seismic Tomography with Applications in Global Seismology and Exploration Geophysics. Dordrecht: D. Reidel Publishing Corporation, 1987
[13]  11 李录明, 罗省贤, 赵波. 初至波表层模型层析反演. 石油地球物理勘探, 2000, 35: 559–564
[14]  12 Liu Y Z, Dong L G, Wang Y W, et al. Sensitivity kernels for seismic Fresnel volume tomography. Geophysics, 2009, 74: U35–U46
[15]  13 刘玉柱, 董良国, 王毓玮, 等. 初至波菲涅尔体地震层析成像. 地球物理学报, 2009, 52: 2310–2320
[16]  14 刘玉柱, 董良国. 初至波走时层析中的正则化方法. 石油地球物理勘探, 2007, 42: 682–685, 698
[17]  15 Chen X H, Mu Y G. Nonlinear wave equation inversion of VSP data. The First International Conference “Inverse Problems: Modeling and Simulation”, 2002 July 14–21, Fethiye, Turkey
[18]  16 Al-Yahya K. Velocity analysis by iterative profile migration. Geophysics, 1989, 54: 718–729??
[19]  17 Liu Z Y, Bleistein N. Migration velocity analysis: Theory and an iterative algorithm. Geophysics, 1995, 60: 142–153??
[20]  18 Woodward M J. Wave-equation tomography. Geophysics, 1992, 57: 15–26??
[21]  19 Snieder R, Lomax A. Wavefield smoothing and the effect of rough velocity perturbations on arrival times and amplitudes. Geophys J Int, 1996, 125: 796–812??
[22]  20 Marquering H, Nolet G, Dahlen F A. Three-dimensional waveform sensitivity kernels. Geophys J Int, 1998, 132: 521–534??
[23]  21 Marquering H, Dahlen F A, Nolet G. Three-dimensional sensitivity kernels for finite-frequency traveltimes: The banana-doughnut paradox. Geophys J Int, 1999, 137: 805–815??
[24]  22 Spetzler J, Snieder R. The Fresnel volume and transmitted waves. Geophysics, 2004, 69: 653–663??
[25]  23 Wu R S, Toks?z M N. Diffraction tomography and multisource holography applied to seismic imaging. Geophysics, 1987, 52: 11–25??
[26]  24 Spetzler J, Snieder R. The effect of small-scale heterogeneity on the arrival time of waves. Geophys J Int, 2001, 145: 786–796??
[27]  25 Dahlen F A, Hung S H, Nolet G. Fréchet kernels for finite-frequency traveltimes—I. Theory. Geophys J Int, 2000, 141: 157–174??
[28]  26 Dahlen F A. Finite-frequency sensitivity kernels for boundary topography perturbations. Geophys J Int, 2005, 162: 525–540??
[29]  27 Hung S H, Dahlen F A, Nolet G. Wavefront healing: A banana-doughnut perspective. Geophys J Int, 2001, 146: 289–312??
[30]  28 Zhang Z G, Shen Y, Zhao L. Finite-frequency sensitivity kernels for head waves. Geophys J Int, 2007, 171: 847–856??
[31]  29 Nolet G, Dahlen F A. Wave front healing and the evolution of seismic delay times. J Geophys Res, 2000, 105: 19043–19054??
[32]  30 Thore P D, Juliard C. Fresnel zone effect on seismic velocity resolution. Geophysics, 1999, 64: 593–603??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133