全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

印度季风期对青藏高原东南部地表水体δ18O高程效应的影响

, PP. 747-754

Keywords: δ18O,高程效应,夏季季风,藏东南,高程递减率

Full-Text   Cite this paper   Add to My Lib

Abstract:

?δ18O的高程效应已成为研究青藏高原古高度的一个前沿热点科学问题,而解决这一前沿热点科学问题的有效方法之一就是现代过程研究.本研究展示了青藏高原东南部两个采样剖面(察隅河剖面和拉萨-尼洋河剖面)获取的地表水δ18O结果,用6~9月的地表水样品代表季风期,而一年中剩余时间的地表水样品代表非季风期.本研究还结合了之前对于青藏高原及其周边地区地表水δ18O的相关研究,以期从局地到区域、全面理解不同水汽来源对地表水δ18O高程效应的影响.研究结果表明,藏东南及其周边地区受印度夏季风影响强烈,该区域内地表水δ18O主要受到海拔的影响;季风期和非季风期高程效应的变化表明,单一、主导的水汽补给或者简单的水汽来源带来较小的高程递减率,而局地对流的增加将增大地表水δ18O的高程递减率.本研究还揭示了印度夏季风对该区域内地表水δ18O高程效应的显著影响,以及局地对流和西风带的发展对高程递减率的影响.

References

[1]  1 Chamberlain C P, Poage M A, Craw D, et al. Topographic development of the southern Alps recorded by the isotopic composition of authogenic clay minerals, south island, New Zealand. Chem Geol, 1999, 155: 279–294??
[2]  2 Horton T W, Sjostrom D J, Ambruzzese M J, et al. Spatial and temporal variation of Cenozoic surface elevation in the Great Basin and Sierra Nevada. Am J Sci, 2004, 304: 862–888??
[3]  3 Blisnuik P M, Stern L A, Chamberlain C P, et al. Climate and ecologic changes during Miocene surface uplift in the southern Patagonian Andes. Earth Planet Sci Lett, 2005, 230: 125–142??
[4]  4 Garzione C N, Dettman D L, Quade J, et al. High times on the Tibetan Plateau: Paleoelevation of the Thakkhola graben, Nepal. Geology, 2000, 28: 339–342??
[5]  5 Garzione C N, Quade J, DeCelles P G, et al. Predicting paleoelevation of Tibet and the Himalaya from δ18O vs. altitude gradients in meteoric water across the Nepal Himalaya. Earth Planet Sci Lett, 2000, 183: 215–299??
[6]  6 Currie B S, Rowley D B, Tabor N J. Middle Miocene paleoaltimetry of southern Tibet: Implications for the role of mantle thickening and delamination in the Himalayan orogen. Geology, 2005, 33: 181–184??
[7]  7 Spicer R A, Harris N B, Widdowson M. Constant elevation of southern Tibet over the past 15 million years. Nature, 2003, 421: 622–624??
[8]  8 Hou S, Valerie M D, Qin D, et al. Modern precipitation stable isotope vs. elevation gradients in the High Himalaya. Comment on “a new approach to stable isotope-based paleoaltimetry: Implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Micocene” by David B. Rowley et al. Earth Planet Sci Lett, 2003, 209: 395–399??
[9]  9 Rowley D B, Currie B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola Basin, central Tibet. Nature, 2006, 439: 677–681??
[10]  10 Dansgaard W. Stable isotopes in precipitation. Tellus, 1964, 16: 436–467??
[11]  11 Siegenthaler U, Oeschger H. Correlation of 18O in precipitation with temperature and altitudes. Nature, 1980, 285: 314–318??
[12]  12 Poage M A, Chamberlain C P. Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: Considerations for studies of paleoelevation change. Am J Sci 2001, 301: 1–15
[13]  13 王宁练, 张世彪, 贺建桥, 等. 祁连山中段黑河上游山区地表径流水资源主要形成区域的同位素示踪研究. 科学通报, 2009, 54: 2148–2152
[14]  14 王宁练, 张世彪, 蒲剑辰, 等. 黑河上游河水中δ18O 的季节变化特征及其影响因素研究. 冰川冻土, 2008, 30: 914–920
[15]  15 Quade J, Garzione C. Paleoelevation reconstruction using pedogenic carbonates. Rev in Mineral Geochem, 2007, 66: 53–87??
[16]  16 杨晓新, 徐柏青, 杨威, 等. 藏东南不同季节水体中氧同位素的高程递减变化研究. 科学通报, 2009, 54: 2140–2147
[17]  17 Ye D Z, Wu G X. The role of the heat source of the Tibetan Plateau in the general circulation. Meteorol Atmos Phys, 1998, 67: 181–198??
[18]  18 Wu G X, Zhang Y S. Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon Weather Rev, 1997, 126: 913–927
[19]  19 Ramstein G, Fluteau F, Besse J, et al. Effect of orogeny, plateau motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature, 1997, 386: 788–796
[20]  20 朱乾根, 胡江林. 青藏高原大地形对夏季大气环流和亚洲下季风影响的数值试验. 南京气象学院学报, 1993, 16: 120–129
[21]  21 钱正安, 吴统文, 梁潇云. 青藏高原及周围地区的平均垂直环流特征. 大气科学, 2001, 25: 444–454
[22]  22 周长艳, 何金海, 李薇, 等. 夏季东亚地区水气输送的气候特征. 南京气象学院学报, 2005, 28: 1–27
[23]  23 姚檀栋, 周行, 杨晓新. 印度季风水气对青藏高原降水和河水中δ18O 高程递减率的影响. 科学通报, 2009, 54: 2123–2130
[24]  24 Yao T, Thompson L G, Mosley-Thompson E, et al. Climatological significance of δ18O in north Tibetan ice cores. J Geophys Res, 1996, 101: 29531–29537??
[25]  25 Tian L, Masson-Delmotte V, Stievenard M, et al. Tibetan summer monsoon northward extent reveled by measurements of water stable isotopes. J Geophys Res, 2001, 206: 28081–28088
[26]  26 Tian L, Yao T, Schuster P F, et al. Oxygen-18 concentrations in recent precipitation and ice cores on the Tibetan Plateau. J Geophys Res, 2003, 108: 4293–4303??
[27]  27 Bartarya S K, Bhattacharya S K, Ramesh R, et al. δ18O and δD systematics in the surficial waters of the Gaula river catchment area, Kumaun Himalaya, India. J Hydrol, 1995, 167: 369–379??
[28]  28 Dalai T K, Bhattacharya S K, Krishnaswami S. Stable isotopes in the source waters of the Yamuna and its tributaries: Seasonal and altitudinal variations and relation to major cations. Hydrol Process, 2002, 16: 3345–3364??
[29]  29 Gonfiantini R, Roche M A, Olivry J C, et al. The altitude effect on the isotopic composition of tropical rains. Chem Geol, 2001, 181: 147–167??
[30]  30 叶笃正, 高由禧, 等. 青藏高原气象学. 北京: 科学出版社, 1979
[31]  31 Kang S, Karl J K, Mayewski P, et al. Stable isotopic composition of pre

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133