全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中国东南沿海短叶茳芏潮汐沼泽湿地甲烷动态

, PP. 723-735

Keywords: 甲烷通量,短叶茳芏,涨落潮,甲烷氧化,植物体甲烷传输,闽江口

Full-Text   Cite this paper   Add to My Lib

Abstract:

?采用静态箱法连续2年对我国东南沿海闽江口短叶茳芏(CyperusmalaccensisLam.var.brevifoliusBocklr.)沼泽湿地在涨潮前、涨落潮过程和落潮后排向大气的甲烷通量进行了测定,同时测定了沼泽湿地土壤剖面孔隙水溶解性甲烷浓度,并原位系统地测定了短叶茳芏沼泽湿地甲烷产生、甲烷氧化和植物体介导的甲烷传输排放整个甲烷代谢过程及其相关环境和植物因子.结果表明,短叶茳芏沼泽湿地甲烷通量具有明显的季节变化,6~8月份是甲烷通量高峰期;2008~2009年,涨潮前、涨落潮过程和落潮后的甲烷通量范围分别是0.19~13.99,0.03~10.63和0.01~17.93mgm-2h-1,平均值分别为1.82,0.98和2.10mgm-2h-1;涨落潮过程排向大气的甲烷通量低于涨潮前和落潮后,落潮后甲烷通量月平均值稍高于涨潮前,但差异性不显著(P>0.05);2008年和2009年沼泽湿地甲烷年通量估算值为21.45和5.99gm-2a-1,其中,涨落潮阶段甲烷通量年估算值仅分别占甲烷年通量估算值的19.8%和8.0%;植物介导的甲烷传输排放量占甲烷通量的22.3%~43.9%;涨潮前和落潮后土壤温度对于短叶茳芏沼泽湿地甲烷通量均影响显著,两者呈显著正相关.

References

[1]  1 Segers R. Methane production and methane consumption: A review of process underlying wetland methane fluxes. Biogeochemistry, 1998, 41: 23–51??
[2]  2 IPCC. Climate change: The physical science basis contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge-New York: Cambridge University Press, 2007
[3]  3 Bartlett K B, Harris R C. Review and assessment of methane emissions form wetlands. Chemosphere, 1993, 26: 261–320??
[4]  11 王德宣, 丁维新, 王毅勇. 若尔盖高原与三江平原湿地CH4 排放差异的主要环境影响因子. 湿地科学, 2003, 1: 63–67
[5]  12 宋长春, 阎百兴, 王跃思, 等. 三江平原沼泽湿地CO2 和CH4 通量及影响因子. 科学通报, 2003, 48: 24731–2477
[6]  13 Song C C, Xu X F, Tian H Q, et al. Ecosystem-atmosphere exchange of C and N ecosystem respiration in wetlands in the Sanjing Plain, Northeastern China. Glob Change Biol, 2009, 15: 692–705??
[7]  14 于君宝, 刘景双, 孙志高, 等. 中国东北区淡水沼泽湿地NO2 和CH4 排放通量及主导因子. 中国科学D 辑: 地球科学, 2009, 39: 177–187
[8]  15 沈焕庭, 朱建荣.论我国海岸带海陆相互作用研究.海洋通报, 1999, 18: 11–17
[9]  16 黄国宏, 李玉祥, 陈冠雄, 等. 环境因素对芦苇湿地CH4 排放的影响. 环境科学, 2001, 22: 1–5
[10]  17 杨红霞, 王东启, 陈振楼, 等. 长江口潮滩湿地-大气界面碳通量特征. 环境科学学报, 2006, 26: 667–673
[11]  18 仝川, 闫宗平, 王维奇, 等. 闽江河口感潮湿地入侵种互花米草甲烷通量及影响因子. 地理科学, 2008, 28: 826–832
[12]  19 曾从盛, 王维奇, 张林海. 闽江河口短叶茳芏潮汐湿地甲烷通量. 应用生态学报, 2010, 21: 500–504
[13]  20 Buckley D H, Baumgartner L K, Visscher P T. Vertical distribution of methane metabolism in microbial mats of the Great Sippewissett salt marsh. Environ Microbiol, 2008, 10: 967–977??
[14]  21 郑彩红, 曾从盛, 陈志强, 等.闽江河口区湿地景观格局演变研究. 湿地科学, 2006, 4: 29–34
[15]  22 仝川, 曾从盛, 王维奇, 等. 闽江河口芦苇潮汐湿地甲烷通量及主要影响因子. 环境科学学报, 2009, 29: 207–216
[16]  23 Ding W X, Cai Z C, Tsuruta H, et al. Key factors affecting spatial variation of methane emissions from freshwater marshes. Chemosphere, 2003, 51: 167–173??
[17]  24 Watanabe I, Takada G, Hashimoto T, et al. Evaluation of alternative substrates for determining methane-oxidizing activities and methanotrophic populations in soils. Biol Fertil Soils, 1995, 20: 101–106??
[18]  25 King G M. In situ analysis of methane oxidation association with roots and rhizomes of a Bur Reed in a marine wetland. Appl Environ Microbiol, 1996, 62: 4548–4555
[19]  26 Ding W X, Cai Z C, Tsuruta H. Plant species effects on methane emissions from freshwater marshes. Atmos Environ, 2005, 39: 3199–3207??
[20]  27 Hirota M, Tang Y H, Hu Q W, et al. Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland. Soil Biol Biochem, 2004, 36: 737–748??
[21]  28 Tamn F Y, Wong Y S. Variations of soil nutrient and organic matter content in a subtropical mangrove ecosystem. Water Air Soil Pollut, 1998, 103: 245–261??
[22]  29 DeLaune R D, Smith C J, Patrick W H. Methane release from Gulf coast wetlands. Tellus, 1983, 35B: 8–15
[23]  30 黄国宏, 肖笃宁, 李玉祥, 等. 芦苇湿地温室气体甲烷(CH4)排放研究. 生态学报, 2001, 21: 1494–1497
[24]  31 Cheng X L, Peng R H, Chen J Q, et al. CH4 and N2O emissions from Spartina alterniflora and Phragmites australis in experimental mesocosms. Chemosphere, 2007, 68: 420–427??
[25]  32 Singh S N, Kulshreshtha K, Agnihotri S. Seasonal dynamics of methane emission from wetlands. Chemosphere Glob Change Sci, 2000, 2: 39–46??
[26]  33 King G M. Ecological aspects of methane consumption, a key determinant of global methane dynamics. Advance Microb Ecol, 1992, 12: 431–468??
[27]  34 Popp T J, Chanton J P, Whiting G J, et al.Evalu
[28]  4 Kelley C A, Martens C S, Ussler W. Methane dynamics across a tidally flooded riverbank margin. Limnol Oceanogr, 1995, 40: 1112–1129??
[29]  5 Magenheimer J F, Moore T R, Chmura G L, et al. Methane and carbon dioxide flux from a macrotidal salt marsh Bay of Fundy. Estuaries, 1996, 19: 139–145??
[30]  6 van der Nat F J, Middelburg J J. Methane emission from tidal freshwater marsh. Biogeochemistry, 2000, 49: 103-121??
[31]  7 Chang T C, Yang S S. Methane emission from wetland in Taiwan. Atmos Environ, 2003, 37: 4551–4558??
[32]  8 Hirota M, Senga Y, Seike Y, et al. Fluxes of carbon dioxide, methane and nitrous oxide in two contrastive fringing zones of coastal lagoon, Lake Nakaumi, Japan. Chemosphere, 2007, 68: 597–603??
[33]  9 Krupadam R J, Ahuja R, Wate S R, et al. Forest bound estuaries are higher methane emitters than paddy field: A Case of Godavari estuary, East Coast of India. Atmos Environ, 2007, 41: 4819–4827??
[34]  10 Chmura G L, Anisfeld S C, Cahoon D R, et al. Global carbon sequestration in tidal, saline wetland soils. Glob Biogeochem Cycle, 2003, 17: 1111–1120??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133