全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

内分泌干扰物4-壬基酚的水质基准探讨

, PP. 657-664

Keywords: 4-壬基酚,毒性终点,评估方法,水质基准

Full-Text   Cite this paper   Add to My Lib

Abstract:

?本文根据4-壬基酚具有生殖毒性的内分泌干扰特性,选用生殖和死亡两个不同的毒性终点作为毒性数据筛选的依据,采用评估因子法(AF)和物种敏感度分布曲线法(SSD)进行三种不同CAS号的4-壬基酚保护水生生物的水质基准研究.结果表明,由SSD法获得的以死亡为终点的三种不同CAS号(分别为:104405,25154523,84852163)的4-壬基酚的急慢性基准CMC和CCC分别为26.7,13.6,3.84μgL-1和8.86,2.21,0.97μgL-1,以生殖为毒性终点获得的不同CAS号(分别为:104405,25154523)的4-壬基酚的慢性基准CCC分别为1.59,1.34μgL-1.由AF法获得的以死亡为终点的三种4-壬基酚的慢性基准值CCC分别为0.165,1.03,0.74μgL-1,以生殖为毒性终点获得的三种4-壬基酚的CCC分别为0.5,0.5,0.1μgL-1.可以看出由AF法获得的慢性基准值均低于由SSD法获得的相应基准值,同时以生殖为毒性终点获得的基准值CCC大都小于以死亡为终点获得的基准值.研究结果以期为内分泌干扰物水质基准的研究提供方法依据.

References

[1]  1 Ying G G, Brian W, Rai K. Environmental fate of alkylphenols and alkylphenol ethoxylates––A review. Environ Int, 2002, 28: 1–12??
[2]  13 吴丰昌, 孟伟, 曹宇静, 等. 镉的淡水水生生物水质基准研究. 环境科学研究, 2011, 24: 172–184
[3]  14 吴丰昌, 冯承莲, 曹宇静, 等. 锌对淡水生物的毒性特征与水质基准研究. 生态毒理学报, 2011, 6: 367–382
[4]  15 Servos M R. Review of the aquatic toxicity, estrogenic responses and bioaccumulation of alkylphenols and alkylphenol polyethoxylates. Wa Qual Res J Can, 1999, 34: 123–177
[5]  16 Sonnenschein C, Soto A M. An updated review of environmental estrogen and androgen mimics and antagonists. J Steroid Biochem Molec Biol, 1998, 65: 143–150??
[6]  17 Sumpter J P. Xenoendocrine disrupters-environmental impacts. Toxicol Lett, 1998, 102–103: 337–342??
[7]  2 周益奇, 马梅, 王子健. 柱前衍生-气相色谱/质谱法测定壬基酚分法研究. 分析化学, 2005, 33: 1109–1112
[8]  3 Sota A M, Justicia H, Wary J W. Pnonylphenol: An es-trogeniexenobiotie released from Iniodified Polystyrene. Environ Hea1th Perspect, 1991, 92: 167–173??
[9]  4 Hutchinson T H, Ankley G T, Segner H, et al. Screening and testing for endocrine disruption in fish-biomarkers as signposts not traffic lights in risk assessment. Environ Health Perspect, 2006, 114(Suppl): 106–114
[10]  5 吴海珍, 梁世中, 韦朝海. 壬基酚的环境行为及生物降解研究进展. 化工环保, 2006, 26: 31–34
[11]  6 Stephan C E, Mount D I, Hansen D J, et al. Guideline for deriving numerical national water quality criteria for the protection of aquatic organism and their uses. Springfield: National Technical Information Service (NTIS), 1985. 22–55
[12]  7 张瑞卿, 吴丰昌, 李会仙, 等. 中外水质基准发展趋势和存在的问题. 生态学杂志, 2010, 29: 2049–2056
[13]  8 吴丰昌, 孟伟, 宋永会, 等. 中国湖泊水环境基准的研究进展. 环境科学学报, 2008, 28: 2385–2393
[14]  9 Wu F C, Meng W, Zhao X L, et al. China embarking on development of its own national water quality criteria system. Environ Sci Technol, 2010, 44: 7792–7793
[15]  10 US EPA. Aquatic life ambient water quality criteria–nonylphenol, Final. Office of Water 4304T, EPA-822-R-05-005. December 2005. http://www.epa.gov/waterscience/criteria/aqlife.html
[16]  11 Caldwell D J, Mastrocco F, Hutchinson T H, et al. Derivation of an aquatic predicted no-effect concentration for the synthetic hormone, 17α-ethinylestradiol. Environ Sci Technol, 2008, 42: 7046–7054
[17]  12 吴丰昌, 孟伟, 张瑞卿, 等. 保护淡水水生生物硝基苯水质基准研究. 环境科学研究, 2011, 24: 1–10
[18]  18 USEPA. ECOTOX Database
[19]  [EB/OL]. http://cfpub.epa.gov/ecotox/
[20]  19 Klimisch J, Andreae M, Tillmann U. A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regul Toxicol Pharm, 1997, 25: 1–5??
[21]  20 金小伟, 雷炳莉, 许宜平, 等. 水生态基准方法学概述及建立我国水生态基准的探讨. 生态毒理学报, 2009, 4: 609–616
[22]  21 Balk F, Okkerman P C, Dogger J W. Guidance document for aquatic effects assessment. Paris: Environment Directorate of Organization for Economic Co-operation and Development, 1995. 22–28
[23]  22 雷炳莉, 黄圣彪, 王子健. 生态风险评价理论和方法. 化学进展, 2009, 21: 350–358
[24]  23 De Laender F, De Schamphelaere K A C, Vanrolleghem P A, et al. Do we have to incorporate ecological interactions in the sensitivity assessment of ecosystems? An examination of a theoretical assumption underlying species sensitivity distribution models. Environ Int, 2008, 34: 390–396??
[25]  24 Scheringer M, Steinbach D, Escher B, et al. Probabilistic approaches in the effect assessment of toxic chemicals what are the benefits and limitations? Environ Sci Pollut Res Int, 2002, 9: 307–314
[26]  25 Newman M C, Ownby D R, Mézin L C A, et al. Applying species-sensitivity distributions in ecological risk assessment: Assumptions of distribution type and sufficient numbers of species. Environ Toxicol Chem, 2000, 19: 508–515
[27]  26 Aldenberg T, Slob W. Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data. Ecotoxicol Environ Saf, 1993, 25: 48–63??
[28]  27 Wheeler J R, Grist E P M, Leung K M Y, et al. Species sensitivity distributions: Data and model choice. Mar Pollut Bull, 2002, 45: 192–202??
[29]  28 European Commission. Final report on the ecological risk assessment of chemicals. Adopted by the scientific steering committee at its meeting of 6–7 March, 2003. 1–54
[30]  29 Currie J, Mc Sweeney B. 4-nonylphnenol (branched) and nonylphenol. Oxfordshire: European Union Risk Assessment Repoa, European Union Risk Report Assessment Report, 2001. 4–5
[31]  30 K?llqvist T. Environmental risk assessment of artificial turf systems. Serial No. 5111–2005, report, 19, 12, 2005. 1–20
[32]  31 Von der Ohe P C, Valeria D, Jaroslav S, et al. A new risk assessment approach for the prioritization of 500 classical and emerging organic microcontaminants as potential river basin specific pollutants under the European Water Framework Directive. Sci Total Environ, 2011, 409: 2064–2077??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133