全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于基因表达效应的物种敏感度分析初探

, PP. 673-679

Keywords: 水质基准,重金属,基因表达效应,物种敏感度分布,数据分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

?物种敏感度分析是水质基准推算的主要技术之一,现阶段应用于物种敏感度分析的主要是生物个体水平的毒性数据.随着基因组学数据的日渐丰富,基因表达效应数据能否应用于水质基准的推算值得研究.本研究以重金属镉、铜和锌为例,广泛搜集了相关生物毒性数据,通过构建物种敏感度分布曲线对三种重金属的毒性效应进行了分析.结果表明,镉的急性、慢性和基因表达效应数据的物种敏感度排序为慢性>基因>急性,铜和锌的基因表达效应数据不足,但从趋势上看,锌的三种类型数据的物种敏感度与镉类似,铜与二者不同,其基因表达效应较为敏感,表明基因表达效应具有作为慢性水质基准数据的应用潜力,但现有数据仍然不够丰富.针对在基准推导中的应用,基因表达效应研究中也存在污染物暴露浓度设置不合理以及目标基因的选择范围较小的问题.

References

[1]  1 Posthuma L, Suter II G W, Traas T P. Species Sensitivity Distributions in Ecotoxicology. Boca Raton: Lewis Publishers, 2002
[2]  2 Wheeler J R, Grist E P M, Leung K M Y, et al. Species sensitivity distributions: Data and model choice. Mar Pollut Bull, 2002, 45: 192–202??
[3]  3 US EPA. Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses (PB85-227049). Washington DC: USEPA; Springfield VA: NTIS, 1985
[4]  4 Aldenberg T, Solb W. Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data. Ecotoxicol Environ Saf, 1993, 25: 48–63??
[5]  5 Aldenberg T, Jaworska J S. Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions. Ecotoxicol Environ Saf, 2000, 46: 1–18??
[6]  6 闫振广, 孟伟, 刘征涛, 等. 我国淡水生物氨氮基准研究. 环境科学, 2011, 32: 1564–1570
[7]  7 闫振广, 孟伟, 刘征涛, 等. 我国典型流域镉水质基准研究. 环境科学研究, 2010, 23: 1221–1228
[8]  9 Aardema M J, MacGregor J T. Toxicology and genetic toxicology in the new era of “toxicogenomics”: Impact of “-omics” technologies. Mutat Res-Fund Mol M, 2002, 499: 13–25??
[9]  10 Neumann N F, Galvez F. DNA microarrays and toxicogenomics: Applications for ecotoxicology. Biotechnol Adv, 2002, 20: 391–419??
[10]  11 Pennie W, Pettit S D, Lord P G. Toxicogenomics in risk assessment: An overview of an HESI collaborative research program. Environ Health Perspect, 2004, 112: 417–419??
[11]  12 Thomas R S, Rank D R, Penn S G, et al. Identification of toxicologically predictive gene sets using cDNA microarrays. Mol Pharmacol, 2001, 60: 1189–1194
[12]  13 Snell T W, Brogdon S E, Morgan M B. Gene expression profiling in ecotoxicology. Ecotoxicology, 2003, 12: 475–483??
[13]  14 Bartosiewicz M, Penn S, Buckpitt A. Applications of gene arrays in environmental toxicology: Fingerprints of gene regulation associated with cadmium chloride, benzo(a)pyrene, and trichloroethylene. Environ Health Perspect, 2001, 109: 71–74??
[14]  8 Markert B A, Breure A M, Zechmeister H G. Bioindicators and Biomonitors: Principles, Concepts, and Applications. Amsterdam: Elsevier, 2003
[15]  15 Forbes V E, Palmqvist A, Bach L. The use and misuse of biomarkers in ecotoxicology. Environ Toxicol Chem, 2006, 25: 272–280??
[16]  16 Menzel R, Swain S C, Hoess S, et al. Gene expression profiling to characterize sediment toxicity–– A pilot study using Caenorhabditis elegans whole genome microarrays. BMC Genomics, 2009, 10: 160–174??
[17]  17 Fedorenkova A, vonk J A, Lenders H J R, et al. Ecotoxicogenomics: Bridging the gap between genes and populations. Environ Sci Technol, 2010, 44: 4328–4333??
[18]  18 Van Straalen N M, Roelofs D, Van Gestel C A M, et al. Comment on “Ecotoxicogenomics: Bridging the gap between genes and populations”. Environ Sci Technol, 2010, 44: 9239–9240??
[19]  19 Awkerman J A, Raimondo S, Barron M G. Development of species sensitivity distributions for wildlife using interspecies toxicity correlation models. Environ Sci Technol, 2008, 42: 3447–3452??
[20]  20 俞婷, 缪炜, 万明亮, 等. 镉和铜对嗜热四膜虫金属硫蛋白基因的诱导表达. 动物学报, 2005, 51: 1115–1121
[21]  21 Lee K W, Raisuddin S, Rhee J S, et al. Expression of glutathione S-transferase (GST) genes in the marine copepod Tigriopus japonicus exposed to trace metals. Aqua Toxicol, 2008, 89: 158–166??
[22]  22 Connon R, Hooper H L, Sibly R M, et al. Linking molecular and population stress responses in Daphnia magna exposed to cadmium. Environ Sci Technol, 2008, 42: 2181–2188??
[23]  23 Lee S M, Lee S B, Park C H, et al. Expression of heat shock protein and hemoglobin genes in Chironomus tentans (Diptera, chironomidae) larvae exposed to various environmental pollutants: A potential biomarker of freshwater monitoring. Chemosphere, 2006, 65: 1074–1081??
[24]  24 Chan M K, Othman R, Zubir D, et al. Induction of a putative metallothionein gene in the blood cockle, Anadara granosa, exposed to cadmium. Comp Biochem Physiol C Toxicol Pharmacol, 2002, 131: 123–132??
[25]  25 Lemoine S, Bigot Y, Sellos D, et al. Metallothionein isoforms in Mytilus edulis (Mollusca, Bivalvia): Complementary DNA characterization and quantification of expression in different organs after exposure to cadmium, zinc, and copper. Mar Biotechnol (NY), 2000, 2: 195–203
[26]  26 Ivanina A V, Taylor C, Sokolova I M. Effects of elevated temperature and cadmium exposure on stress protein response in eastern oysters Crassostrea virginica (Gmelin). Aquat Toxicol, 2009, 91: 245–254??
[27]  27 刘迪秋, 葛锋, 陈朝银, 等. 重金属铜、镉对鲫肝脏基因表达的影响. 中国水产科学, 2010, 17: 1243–1249
[28]  28 Williams T D, Diab A, Ortega F, et al. Transcriptomic responses of European flounder (Platichthys flesus) to model toxicants. Aquat Toxicol, 2008, 90: 83–91??
[29]  29 Reynders H, van der Ven K, Moens L N, et al. Patterns of gene expression in carp liver after exposure to a m

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133