全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

下地壳管道流动与青藏高原东缘大尺度构造地貌关系

, PP. 505-512

Keywords: 管道流动,下地壳流变,构造地貌,青藏高原东缘

Full-Text   Cite this paper   Add to My Lib

Abstract:

?青藏高原是板块相互作用所形成的大型构造地貌单元.通常认为印度-欧亚板块汇聚导致增厚的岩石圈发生下部剥离或下地壳内发生粘性管道流动对高原隆升和大尺度构造地貌的形成有重要的动力学联系.就下地壳粘性管道流模型,目前虽然有一些间接观测证据,但就管道的厚度、管道内下地壳物质的粘度及其横向不均一等如何约束管道流的发生,并由此导致地表隆升的时空变化等仍然不清.本文根据流体动力学原理建立了下地壳不同流动方式与大尺度地表构造地貌关系的控制方程.通过大量模拟发现,发生管道流动的下地壳物质粘度在青藏高原东部区可能在(1~5)×1018到(1~4)×1020Pas间,而到四川盆地和云南南部地区增大到1022Pas.其次,当下地壳发生管道粘性流动时,青藏高原向外扩展的地表隆升速度在时间序列上有不断增加的趋势.这些结果对深入探讨青藏高原岩石圈的流变学,解释青藏高原大致在8Ma发生快速隆升的动力学等有一定的理论意义.

References

[1]  1 Molnar P, Tapponnier P. Cenozoic tectonics of Asia: Effects of a continental collision. Science, 1975, 189: 419-426??
[2]  2 Fort L P. Himalayas: The collided range. Present knowledge of the continental arc. Am J Sci, 1975, 275-A: 1-44??
[3]  3 钟大赉, 丁林. 青藏高原的隆起过程及其机制探讨. 中国科学D辑: 地球科学, 1996, 26: 289-295
[4]  4 Tapponnier P, Ryerson F J, Woerd J V, et al. Long-term slip rates and characteristic slip: Keys to active fault behaviour and earthquake hazard. Earth Planet Sci, 2001, 333: 483-494
[5]  5 Mulch A, Chamberlain C P. The rise and growth of Tibet. Nature, 2006, 439: 670-671??
[6]  6 Molnar P, England P. Temperatures in zones of steady-state underthrusting of young oceanic lithosphere. Earth Planet Sci Lett, 1998, 131: 57-70
[7]  7 Clark M, Bush J W M, Royden L H. Dynamic topography produced by lower crustal flow against rheological strength heterogeneities bordering the Tibetan Plateau. Geophys J Int, 2005, 162: 575-590??
[8]  8 Beaumont C, Jamieson R A, Nguyen M H, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, 2001, 414: 738-742 ??
[9]  9 Royden L H, Burchfiel B C, King R W, et al. Surface deformation and lower crustal flow in eastern Tibet. Science, 1997, 276: 788-790??
[10]  10 Kruse S, McNutt M K, Phipps-Morgan J, et al. Lithospheric extension near Lake Mead, Nevada: A model for ductile flow in the lower crust. J Geophys Res, 1991, 96: 4435-4456??
[11]  11 Schoenbohm L M, Burchfiel B C, Chen L, et al. Miocene to present activity along the Red River fault, China, in the context of continental extrusion, upper-crustal rotation, and lower-crustal flow. Geol Soc Am Bull, 2006, 118: 672-688 ??
[12]  12 Clark K M, Royden L H. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 2000, 28:703-706??
[13]  13 Clark M K, Royden L H, Bush J, et al. Sub-regional dynamic topography and deformation of the lower crust by decoupled channel flow in Tibet. EOS Trans Am geophys Un. Fall Meet (Suppl), 2001, 82, abstract T11H-06
[14]  14 Shen F, Royden L H, Burchfiel B. Large-scale crustal deformation of the Tibetan Plateau. J Geophys Res, 2001, 106: 6793-6816??
[15]  15 Flesch L M, Haines A J, Holt W E. Dynamics of the India-Eurasia collision zone. J Geophys Res, 2001, 106: 16435-16460??
[16]  16 Bai D H, Unsworth M J, Meju M A, et al. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nat Geosci, 2010, 11: 1-5
[17]  17 Turcotte D L, Schubert G. Geodynamics. Cambridge: Cambridge University Press, 1998??
[18]  18 Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet. Science, 1992, 255: 1663-1670??
[19]  19 蔡启富. 数学物理方程. 武汉: 武汉水利电力大学出版社, 2000
[20]  20 Zhang, P , Shen Z K, Wang M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 2004, 32: 809-812??
[21]  21 Shen Z K, Lu J, Wang M, et al. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J Geophys Res, 2005, 110: B11409, doi: 10.1029/2004JB003421 ??
[22]  22 马杏垣. 中国岩石圈动力学地图集. 北京: 中国地图出版社, 1989 ??
[23]  23 赵政璋, 李永铁. 青藏高原大地构造特征及盆地演化. 北京: 中国科学出版社, 2001 ??
[24]  24 Jordan T A,Watts A B. Gravity anomalies, flexure and the elastic thickness structure of the India-Eurasia collisional system. Earth Planet Sci Lett, 2005, 236: 737-750
[25]  25 Hilley G E, Burgmann R, Zhang P, et al. Bayesian inference of plastosphere viscosities near the Kunlun fault, northern Tibe. Geophys Res Lett, 2005, 32: L01302, doi: 10. 1029/2004GL021658 ??
[26]  26 He J, Chery J. Slip rates of the Altyn Tagh, Kunlun and Karakorum faults (Tibet) from 3D mechanical modeling. Earth Planet Sci Lett, 2008, 274: 50-58
[27]  27 Wang Y. Heat flow pattern and lateral variations of lithosphere strength in China mainland: Constrains on active deformation. Physics Earth Planet Inter, 2001, 126: 121-146 ??
[28]  28 Unsworth M, Jones A, Wei W, et al. Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data. Nature, 2005, 438: 78-81??
[29]  29 Gao X, Su Y, Wang W, et al. Lower-crust S-wave velocity beneath western Yuannan Province from waveform inversion of dense seismic observations. Terra Nove, 2008, 21: 105-110
[30]  30 He J, Lu S. Lower friction of the Xianshuihe-Xiaojiang fault system and its effect on active deformation around the southeastern Tibetan margin. Terra Nova, 2007, 19: 204-210??
[31]  31 England P C, Houseman G. Extension during continental convergence, with application to the Tibet Plateau. J Geophys Res, 1989, 94: 17561-17579??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133