全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

行播作物二向性反射(BRDF)的一体化模型

, PP. 411-423

Keywords: 行播作物,BRDF,群聚,尼尔逊参数

Full-Text   Cite this paper   Add to My Lib

Abstract:

?行播是我国作物耕种的重要形式,行播作物BRDF模型的建立是描述冠层二向性反射特征以及进一步估算农田生态参数的基础.由于宏观结构特征差异,以往研究往往将行播作物视为连续植被和离散植被之间的过渡性植被,将垄作为主要的几何特征用几何光学方法分别计算冠层光照面与阴影面、背景光照面与阴影面在传感器视场中的面积比例(四分量),并通过线性加权求得行播作物对太阳辐射的一次反射辐射亮度的近似解析表达式,但是鉴于四分量随太阳-目标-传感器三者几何关系的改变而改变,造成计算公式过于复杂,加大了生态参数反演的难度.本文从植被冠层微观结构入手,将行播作物视为叶片在冠层尺度上发生群聚的结果,用尼尔逊参数将均匀连续植被、小尺度群聚连续植被以及行播作物联系起来,从理论上推导尼尔逊参数的近似表达式,并利用几何光学模型思想,将叶片作为计算四分量(即光照与阴影叶片以及光照与阴影背景)的出发点,首先建立均匀连续植被的BRDF模型,然后逐步推广到行播作物的一体化BRDF模型.把描述叶片在空间分布上发生群聚现象的尼尔逊参数(λ)引入到BRDF表达式中有重要意义.为了验证行播作物一体化BRDF模型,利用“黑河遥感联合实验(WATER)”于2008年5月30日和7月1日在黑河流域地面采集的行播作物冠层BRDF数据作为验证数据集与模拟结果进行了对比,结果表明本文提出的行播作物BRDF一体化模型能够较准确的描述行播作物冠层反射的非各向同性性质,表述更合理简便,亦利于参数反演,总之,离散植被和连续植被之间没有不可逾越的鸿沟,充分认识到它们之间的共性与个性有利于BRDF建模;同时也再次证明几何光学四分量模型抓住了所有植被类型二向性反射的基本动因,适用于不同植被类型.

References

[1]  1 Jackson R D, Reginato R J, Printer P J, et al. Plant canopy information extraction from composite scene reflectance of row crops. Appl Optics, 1979, 18: 3775-3782
[2]  2 Kimes D S. Remote sensing of row crop structure and component temperatures using directional radiometric temperatures and inversion techniques. Remote Sens Environ, 1983, 13: 33-55??
[3]  3 阎广建, 蒋玲梅, 王锦地, 等. 行播作物热辐射双向间隙率模型及验证. 中国科学D 辑: 地球科学, 2002, 32: 857-863
[4]  4 陈良富, 柳钦火, 范闻捷, 等. 行播作物热辐射方向性孔隙率模型. 中国科学D 辑: 地球科学, 2002, 32: 290-298
[5]  5 Li X W, Strahler A H. Geometric-optical bidirectional reflectance modeling of a conifer forest canopy. IEEE Trans Geosci Remote Sens,1985, GE-24: 906-919
[6]  6 Nilson T. A theoretical analysis of the frequency gaps in plant stands. Agric For Meteorol, 1971, 8: 25-28??
[7]  7 Nilson T, Kuusk A. A reflectance model for homogenous plant canopy and its inversion. Remote Sens Environ, 1989, 27: 157-167??
[8]  8 Chen J M, Liu J, Leblanc S G, et al. Multi-angular optical remote sensing for assessing vegetation structure and carbon absorption. Remote Sens Environ, 2003, 84: 516-525??
[9]  9 Hapke B W. Bi-directional reflectance spectroscopy: 1. Theory. J Geophys Res, 1981, 86: 3039-3054??
[10]  10 Liang S L, Strahler A H. An analytical BRDF model of canopy radiative transfer and its inversion. IEEE Trans Geosci Remote Sens, 1993,31: 1081-1092??
[11]  11 Kuusk A. A fast, invertible canopy reflectance model. Remote Sens Environ, 1995, 51: 250-342
[12]  12 Fan W J, Xu X R, Liu X C, et al. The accurate LAI retrieval method based on PROBA/CHRIS data. Hydrol Earth Syst Sci, 2010, 14: 1-9??
[13]  13 徐希孺, 范闻捷, 陶欣. 遥感反演连续植被叶面积指数的空间尺度效应. 中国科学D 辑: 地球科学, 2009, 39: 79-84
[14]  14 Hapke B W. Bi-directional reflectance spectroscopy: 4. The extinction coefficient and the opposition effect. Icarus, 1986, 67: 264-280??
[15]  15 Chen J M, Black T A. Defining leaf area index for non-flat leaves. Plant Cell Environ, 1992, 15: 421-429??
[16]  16 徐希孺. 遥感物理. 北京: 北京大学出版社, 2005??
[17]  17 Kuusk A. The hot spot effect of a uniform vegetative cover. Sov J Remote Sens, 1985, 3: 645-658
[18]  18 Chen J M, Rich P M, Gower S T, et al. Leaf area index of boreal forests: Theory, techniques and measurements. J Geophys Res, 1997, 102:29429-29443??
[19]  19 Ross J. The Radiation Regime and Architecture of Plant Stands. The Hague: Dr. W. Junk Publishers, 1981??
[20]  20 Andrieu B, Sinoquet H. Evaluation of structure description requirements for predicting gap fraction of vegetation canopies. Agric For Meteorol, 1993, 65: 207-227??
[21]  21 van Gardingen P R, Jackson G E, Hernandez-Daumas S, et al. Leaf area index estimates obtained for clumped canopies using hemispherical photography. Agric For Meteorol, 1999, 94: 243-257??
[22]  22 Nouvellon Y, Begue A, Moran M S, et al. PAR extinction in shortgrass ecosystems effects of clumping sky conditions and soil albedo. Agric For Meteorol, 2000, 105: 21-41??
[23]  23 Kucharik C J, Norman J M, Murdock L M, et al. Characterizing canopy nonrandomness with a multiband vegetation imager (MVI). J Geophys Res, 1997, 102: 29455-29473??
[24]  24 Kucharik C J, Norman J M, Gower S T. Measurements of branch area and adjusting leaf area index indirect measurements. Agric For Meteorol, 1998, 11: 69-88
[25]  25 Kuusk A. A Markov chain model of canopy reflectance. Agric For Meteorol, 1995, 76: 221-236??
[26]  26 Weiss M, Baret F, Smith G J, et al. Review of methods for in situ leaf area index determination. Part II Estimation of LAI errors and sampling. Agric For Meteorol, 2004, 121: 37-53??
[27]  27 Duthoit S, Demarez V, Gastellu-Etchegorry J P, et al. Assessing the effects of the clumping phenomenon on BRDF of a maize crop based on 3D numerical scenes using DART model. Agric For Meteorol, 2008, 148: 1341-1352??
[28]  28 Li X, Ma M G, Wang J, et al. Simultaneous remote sensing and ground-based experiment in Heihe River Basin: Scientific objectives and experiment design. Adv in Earth Sci, 2008, 23: 897-914
[29]  29 Lacaze R, Roujean J L. G-function and HOt SpoT (GHOST) reflectance model application to multi-scale airborne POLDER measurements. Remote Sens Environ, 2001, 76: 67-80??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133