8 Fillion L, Mahfouf J F. Coupling of moist-convective and stratiform precipitation processes for variational data assimilation. Mon Weather Rev, 2000, 128: 109-124??
[2]
9 Fillion L, Belair S. Tangent linear aspects of the Kain-Fritsch moist convective parameterization scheme. Mon Weather Rev, 2004, 132:2477-2494??
[3]
10 LeDimet F, Talagrand O. Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus,1986, 38A: 97-110
[4]
11 Xu Q. Generalized adjoint for physical process with parameterized discontinuities. Part I: Basic issues and heuristic examples. J Atmos Sci,1996, 53: 1123-1142??
[5]
12 Xu Q. Generalized adjoint for physical processes with parameterized discontinuities, Part IV: Problems in time discretization. J Atmos Sci,1997, 54: 2722-2728??
[6]
13 Xu, Q. Comments on “Tangent linear and adjoint of ‘on-off’ processes and their feasibility for use in 4-dimensional variational data assimilation”. Tellus, 1998, 50A: 653-656??
[7]
14 Xu Q, Gao J, Gu W. Generalized adjoint for physical processes with parameterized discontinuities. Part V: Coarse-grain adjoint and problems in gradient check. J Atmos Sci, 1998, 55: 2130-2135??
[8]
15 Zou X. Tangent linear and adjoint of “on-off” processes and their feasibility for use in 4-dimensional variational data assimilation. Tellus,1997, 49A: 3-31??
[9]
16 Zou X. Reply to “Comments on Tangent linear and adjoint of ‘on-off’ processes and their feasibility for use in 4-dimensional variational data assimilation”. Tellus, 1998, 50A: 657-664??
[10]
17 Zhu J, Kamachi M, Zhou G Q. Nonsmooth optimization approaches to VDA of models with on/off parameterizations: Theoretical issues. Adv Atmos Sci, 2002, 19: 405-424??
[11]
1 Vukicevic T, Errico R M. Linearization and adjoint of parameterized moist diabatic processes. Tellus, 1993, 45A: 493-510??
[12]
2 Verlinde J, Cotton W R. Fitting microphysical observations of non-steady convective clouds to a numerical model: An application of the adjoint technique of data assimilation to a kinematic model. Mon Weather Rev, 1993, 121: 2776-2793??
[13]
3 Bao J W, Warner T T. Treatment of on/off switches in the adjoint method: FDDA experiments with a simple model. Tellus, 1993, 45A:525-538??
[14]
4 Zupanski D. The effect of discontinuities in the Betts-Miller cumulus convection scheme on four-dimensional data assimilation. Tellus, 1993,45A: 511-524??
[15]
5 Zupanski D, Mesinger F. Four-dimensional data assimilation of precipitation data. Mon Wea Rev, 1995, 123: 1112-1127??
[16]
6 Zou X, Navon I M, Sela J G. Variational data assimilation with moist threshold processes using the NMC spectral model. Tellus, 1993, 45A:370-387??
[17]
7 Kuo Y H, Zou X, Guo Y R. Variational assimilation of precipitable water using nonhydrostatic mesoscale adjoint model. Part I: Moisture retrievals and sensitivity experiments. Mon Weather Rev, 1996, 124: 122-147??
[18]
18 Mu M, Wang J F. An adjoint method for variational data assimilation with physical “on-off” processes. J Atmos Sci, 2003, 60: 2010-2018??
[19]
19 Mu M, Zheng Q. Zigzag oscillations in variational data assimilation with physical “on-off” processes. Mon Weather Rev, 2005, 133:2711-2720??
[20]
20 Zheng Q, Mu M. The effects of the model errors generated by discretization of “on-off” processes on VDA. Nonlin. Processes Geophys,2006, 13: 309-320??
[21]
21 Wang J F, Mu M, Zheng Q. Initial condition and parameter estimation in physical ‘on-off’ processes by variational data assimilation. Tellus,2005, 57A: 736-741??
[22]
22 Mitchell M. An Introduction to Genetic Algorithms. Cambridge: MIT Press, 1996??
[23]
23 Barth N H. Oceanographic experiment design II: Genetic algorithms. J Atmos Oceanic Technol, 1992, 9: 434-443??