全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于MODIS的青藏高原植被净初级生产力研究

, PP. 402-410

Keywords: MODIS,青藏高原,NPP,GLO-PEM

Full-Text   Cite this paper   Add to My Lib

Abstract:

?利用MODIS数据反演光合有效辐射(Photosyntheticallyactiveradiation,PAR),采用AMSR-E微波遥感土壤湿度数据,驱动GLO-PEM模型估算青藏高原净初级生产力.克服了由于降水插值和辐射插值给模型带来的不确定性.估计的PAR与观测值比较,RMSE(均方根误差,RootMeanSquareError)分别为9和19.68Wm-2,R2分别为0.89和0.67.GLO-PEM模拟NPP与野外采样NPP关系明显,R2达到0.93.2005~2008年青藏高原植被的净初级生产力平均总量为0.37PgCa-1.总体分布是自东南至西北递减,NPP在0~1500gCm-2a-1之间变化.青藏高原植被的水平分布规律受制于水热条件组合.青藏高原东南部(降水量大于450mm)和西北部(降水量小于450mm)植被生产力受不同的气象因子制约.降水量小于450mm的区域内,青藏高原植被生产力变化的主导因子为降水量;降水量大于450mm的区域,植被生产力变化的主导因子为气温,随着气温的升高,植被净初级生产力显著的提高.

References

[1]  8 Ruimy A, Kergoat L, Bondeau A. Comparing global models of terrestrial net primary productivity (NPP): Analysis of differences in light absorption and light-use efficiency. Glob Change Biol, 1999, 5(Suppl 1): 56-64
[2]  9 吕建华, 季劲钧. 青藏高原大气-植被相互作用的模拟实验: 植被叶面积指数和净初级生产力. 大气科学, 2002, 26: 255-262
[3]  10 周才平, 欧阳华, 王勤学, 等. 青藏高原主要生态系统净初级生产力的估算. 地理学报, 2004, 59: 74-79
[4]  11 朴世龙, 方精云. 1982-1999 年青藏高原植被净第一性生产力及其时空变化. 自然资源学报, 2002, 17: 373-381
[5]  12 Prince S D, Goward S N. Global primary production: A remote sensing approach. J Biogeogr, 1995, 22: 815-835??
[6]  13 Cao M, Prince S D, Small J, et al. Satellite remotely sensed interannual variability in terrestrial net primary productivity from 1980 to 2000. Ecosystems, 2004, 7: 233-242
[7]  14 Hunt E R. Relationship between woody biomass and PAR conversion efficiency for estimating net primary production from NDVI. Int J Remote Sens, 1994, 15: 1725-1729??
[8]  15 Running S W, Coughlan J C. A general model of forest ecosystem processes for regional application I. Hydrological balance, canopy gas exchange and primary production processes. Ecol Model, 1988, 42: 125-154??
[9]  16 Ryan M G. A simple method for estimating gross carbon budgets for vegetation in forest ecosystems. Tree Physiol, 1991, 9: 255-266
[10]  21 Chen J, Jonsson P, Tamura M, et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens Environ, 2004, 91: 332-344??
[11]  22 Kaufman Y J, Tanre D. Algorithm for remote sensing of tropospheric aerosols from MODIS. Algorithm theoretical basis document. Green belt, MD: NASA Goddard Space Flight Center, Revised October 26, 1998
[12]  23 Gao B, Kaufman Y J. The MODIS near-IR water vapor algorithm, Algorithm technical background document. NASA Goddard Space Flight Center, 1998
[13]  24 King M D, Tsay S C, Platnick S E, et al. Cloud retrieval algorithms for MODIS: Optical thickness, effective particle radius and thermodynamic phase. MODIS algorithm theoretical basis document no. ATBD-MOD-05. MOD06-Cloud product. NASA Goddard Space Flight Center, 1997
[14]  25 Menzel W P, Frey R A, Baum B A, et al. Cloud top properties and cloud phase algorithm theoretical basis document. Algorithm theoretical basis document. NASA Goddard Space Flight Center, 2002
[15]  26 Knyazikhin Y, Glassy J, Privette J L, et al. MODIS Leaf Area Index(LAI) and Fraction of Photosynthetically Active Radiation Absorbed by Vegetation (FPAR) Product (MOD15). Algorithm Theoretical Basis Document, 1999
[16]  27 Njoku E G, Jackson T J, Lakshmi V, et al. Soil moisture retrieval from AMSR-E. IEEE Geosci Remote Sensing, 2003, 41: 215-229??
[17]  28 Hutchinson M F. ANUSPLIN version 4.2 user guide. 2001??
[18]  29 Grant R H. Ultraviolet band photosynthetically active radiation environment to fin cline leaf surfaces in a maize canopy and implications for modeling. Agr Forest Meteorol, 1999, 9: 187-201
[19]  30 Alados I, Foyo-Moreno I, Olmo F J, et al. Relationship between net radiation and solar radiation for semi-arid shrub-land. Agr Forest Meteorol, 2003, 116: 221-227??
[20]  31 李英年, 周华坤. 祁连山海北高寒草甸地区植物生长期的光合有效辐射特征. 高原气象, 2002, 21: 90-95
[21]  32 王旭, 尹光彩, 周国逸, 等. 鼎湖山针阔混交林光合有效辐射的时空格局. 北京林业大学学报, 2007, 29: 90-96
[22]  33 李英年, 赵亮, 徐世晓, 等. 海北高寒草甸生态系统定位站辐射气候特征. 山地学报, 2006, 24: 298-305
[23]  34 Gill R, Kelly R H, Parton W J, et al. Using simple environmental variables to estimate below-ground productivity in grasslands. Glob Ecol Biogeogr, 2002, 11: 79-86??
[24]  35 Fan J, Shao Q, Liu J, et al. Assessment of effects of climate change and grazing activity on grassland yield in the Three Rivers Headwaters Region of Qingha-Tibet Plateau, China. Environ Monitor Assess, 2010, 170: 571-584??
[25]  1 郑度, 姚檀栋. 青藏高原隆升与环境效应. 北京: 科学出版社, 2004. 1-564
[26]  2 吴绍洪, 尹云鹤, 郑度, 等. 青藏高原近30 年气候变化趋势. 地理学报, 2005, 60: 3-11
[27]  3 黄玫, 季劲钧, 彭莉莉. 青藏高原1981-2000 年植被净初级生产力对气候变化的响应. 气候与环境研究, 2008, 13: 608-617
[28]  4 Cramer W, Kicklighter D W, Bondeau A, et al. Comparing global models of terrestrial net primary productivity (NPP): Overview and key results. Glob Biogeochem Cycle, 1999, 5: 1-15
[29]  5 Field C B, Behrenfeld J, Randerson J T, et al. Primary production of the biosphere: Intergrating terrestrial and oceanic components. Science,1998, 281: 237-240??
[30]  6 Field C B, Randerson J T, Malmstrom C M. Global net primary production: Combining ecology and remote sensing. Remote Sens Environ,1995, 51: 74-88??
[31]  7 Keeling C D, Chin J F S, Whorf T P. Increased acivity of northern vegetation inferred from atmospheric CO2 measurements. Nature, 1996,382: 146-149??
[32]  17 Liu J, Chen J M, Cihlar J, et al. Net primary productivity distribution in the BOREAS region from a process model using satellite and surface data. J Geophys Res, 1999, 104: 27735-27754??
[33]  18 Laake P E, Azofeifa G A. Simplified atmospheric radiative transfer modeling for estimation incident PAR using MODIS atmosphere products. Remote Sens Environ, 2004, 91: 98-113??
[34]  19 Laake P E, Sanchez-Azofeifa G A. Mapping PAR using MODIS atmosphere products. Remote Sens Environ, 2005, 94: 554-563??
[35]  20 Chen L, Gao Y, Yang L, et al. MODIS-derived daily PAR simulation from cloud-free images and its validation. Sol Energy, 2008, 82:528-534??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133