全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

利用伪谱法模拟横向非均匀全球模型中的SH波场

, PP. 140-148

Keywords: 地震波传播,计算地震学,伪谱法,全球地震学,核幔边界

Full-Text   Cite this paper   Add to My Lib

Abstract:

?基于傅里叶伪谱法(Fourierpseudospectralmethod,PSM),发展了模拟具有任意横向非均匀结构的全地球模型中SH波传播的算法.所采用的模型为通过地球大圆选取的一个二维全地球剖面,所求解的弹性波动方程定义在二维柱坐标系下.波动方程中空间微分的数值求解通过波数域的乘积运算实现,空间域与波数域之间的变换通过快速傅里叶变换(fastFouriertransformation,FFT)进行.由于PSM具有精度较高、计算速度较快的特点,所以对于非均匀结构可以近似为在垂直剖面方向上对称的模型,本算法能够较精确地计算较高频率的全球SH波场的理论地震图.和基于球坐标系二维全球模型的算法相比,本算法能够更方便地处理震源项.用该算法计算了PREM模型中全球SH波的传播,分析了各种震相的产生以及它们在各个界面上的反射、透射、绕射,并将其应用于包含核幔边界低速扰动结构的横向非均匀全球模型,讨论了他们对全球SH波传播的影响.

References

[1]  1 He Y M, Wen L X, Zheng T Y. Geographic boundary and shear wave velocity structure of the “Pacific anomaly” near the core-mantle boundary beneath western Pacific. Earth Planet Sci Lett, 2006, 244: 302-314??
[2]  2 Ni S D, Helmberger D V, Tromp J. Three-dimensional structure of the African superplume from waveform modeling. Geophys J Int, 2005, 161, doi: 10.1111/j.1365-246X.2005.02508.x
[3]  22 Kosloff D, Reshef M, Loewenthal D. Elastic wave calculation by the Fourier method. Bull Seismol Soc Amer, 1984, 74: 875-891
[4]  23 Fornberg B. The pseudospectral method: Accurate representation of interfaces for elastic wave calculations. Geophysics, 1988, 53: 625-637??
[5]  24 Herrmann R B. SH-wave generation by dislocation source—A numerical study. Bull Seismol Soc Amer, 1979, 69: 1-15
[6]  25 Cerjan C, Kosloff D, Kosloff R, et al. A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics, 1985, 50: 705-708??
[7]  26 Daudt C R, Braile L W, Nowack R L, et al. A comparison of finite-difference and Fourier method calculations of synthetic seismograms. Bull Seismol Soc Amer, 1989, 79: 1210-1230
[8]  3 Wang Y, Wen L X, Weidner D, et al. SH velocity and compositional models near the 660-km discontinuity beneath South America and northeast Asia. J Geophys Res, 2006, 111: B07305, doi: 10.1029/2005JB003849.
[9]  4 Wang T, Chen L. Distinct velocity variations around the base of the upper mantle beneath northeast Asia. Phys Earth Planet Inter, 2009, 172, doi: 10.1016/j.pepi.2008.09.021
[10]  5 张瑞青, 吴庆举, 李永华, 等. 青藏高原羌塘西部上地幔SH 波速度结构的研究. 科学通报, 2008, 53: 2335-2341
[11]  6 Cummins P R, Takeuchi N, Geller R J. Computation of complete synthetic seismograms for laterally heterogeneous models using the Direct Solution Method. Geophys J Int, 1997, 130: 1-16??
[12]  7 Takeuchi N, Geller R J, Cummins P R. Complete synthetic seismograms for 3-D heterogeneous Earth models computed using modified DSM operators and their applicability to inversion for Earth structure. Phys Earth Planet Inter, 2000, 119: 25-36??
[13]  8 Komatitsch D, Tromp J. Spectral-element simulations of global seismic wave propagation—I. Validation. Geophys J Int, 2002, 149: 390-412??
[14]  9 Komatitsch D, Tromp J. Spectral-element simulations of global seismic wave propagation—II. Three-dimensional models, oceans, rotation and self-gravitation. Geophys J Int, 2002, 150: 303-318??
[15]  10 严珍珍, 张怀, 杨长春, 等. 汶川大地震地震波传播的谱元法数值模拟研究. 中国科学 D 辑: 地球科学, 2009, 39: 393-402
[16]  11 Igel H, Weber M. SH-wave propagation in the whole mantle using high-order finite differences. Geophys Res Lett, 1995, 22: 731-734??
[17]  12 Igel H, Weber M. P-SV wave propagation in the Earth''s mantle using finite differences: Application to heterogeneous lowermost mantlestructure. Geophys Res Lett, 1996, 23: 415-418??
[18]  13 Igel H, Gudmundsson O. Frequency-dependent effects on travel times and waveforms of long-period S and SS waves. Phys Earth Planet Inter, 1997, 104: 229-246??
[19]  14 Nissen-Meyer T, Fournier A, Dahlen F A. A 2-D spectral-element method for computing spherical-earth seismograms—I. Moment-tensor source. Geophys J Int, 2007, 168: 1067-1093??
[20]  15 Thorne M S, Lay T, Garnero E J, et al. Seismic imaging of the laterally varying D″ region beneath the Cocos Plate. Geophys J Int, 2007, 170: 635-648, doi: 10.1111/j.1365-246X.2006.03279.x??
[21]  16 Jahnke G, Thorne M S, Cochard A, et al. Global SH-wave propagation using a parallel axisymmetric spherical finite-difference scheme: Application to whole mantle scattering. Geophys J Int, 2008, 173: 815-826, doi: 10.1111/j.1365-246X.2008.03744.x??
[22]  17 Toyokuni G, Takenaka H, Wang Y, et al. Quasispherical approach for seismic wave modeling in a 2D slice of a global Earth model with lateral heterogeneity. Geophys Res Lett, 2005, 32, doi: 10.1029/2004GL022180
[23]  18 Toyokuni G, Takenaka H. FDM computation of seismic wavefield for an axisymmetric earth with a moment tensor point source. Earth Planets Space, 2006, 58: e29-e32
[24]  19 Fornberg B. The pseudospectral method: Comparisons with finite-differences for the elastic wave equations. Geophysics, 1987, 52: 483-501??
[25]  20 Furumura T, Kennett B L N, Furumura M. Seismic wavefield calculation for laterally heterogeneous whole earth models using the pseudospectral method. Geophys J Int, 1998, 135: 845-860??
[26]  21 Wang Y B, Takenaka H, Furumura T. Modelling seismic wave propagation in a two-dimensional cylindrical whole-earth model using the pseudospectral method. Geophys J Int, 2001, 145: 689-708??
[27]  27 Graves R W. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull Seismol Soc Amer, 1996, 86: 1091-1106
[28]  28 Dziewonski A M, Anderson D L. Preliminary reference earth model. Phys Earth Planet Inter, 1981, 25: 297-356??
[29]  29 Helmberger D V, Vidale J E. Modeling strong motions produced by earthquakes with two-dimensional numerical codes. Bull Seismol Soc Amer, 1988, 78: 109-121
[30]  ??

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133