全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

南海南部美济礁200余年滨珊瑚骨骼钙化率变化及其与大气CO2和海水温度的响应关系

, PP. 71-82

Keywords: 骨骼钙化率,大气CO2,SST,滨珊瑚,南海

Full-Text   Cite this paper   Add to My Lib

Abstract:

?工业革命以来的大气CO2浓度上升和全球气候变暖被认为是珊瑚生长的主要威胁.利用珊瑚骨骼X光影像方法分析了美济礁14个大型滨珊瑚的骨骼钙化率,获得了200多年来的珊瑚钙化率变化模式.结果显示珊瑚钙化率的长期变化包括3个增长阶段(1770~1830,1870~1920和1980~2000)和2个降低阶段(1830~1870和1920~1980),其中1770~1830年和1920~1980年分别有200多年来最大增幅(4.5%)和最大降幅(6.2%),最近的时段1980~2000年间珊瑚钙化率有小幅度上升.珊瑚钙化率与大气CO2和海水表层温度(SST)响应模式的分析发现,美济礁珊瑚钙化率与大气CO2的响应关系不成立,百年来的大气CO2浓度增加对珊瑚生长的影响不显著;珊瑚钙化率则与SST具有非线性响应关系,最大钙化率温度为27.2℃,低于和高于该温度,钙化率降低.20世纪早中期的SST上升有利于珊瑚生长,而近20年的SST持续上升则不利于珊瑚生长.

References

[1]  24 Yu K F, Zhao J X, Kenneth D, et al. Storm cycles in the last millennium recorded in Yongshu Reef, southern South China Sea. Palaeogeogr Palaeoclimatol Palaeoecol, 2004, 210: 89-100??
[2]  25 Yu K F, Zhao J X, Wang P X, et al. High-precision TIMS U-series and AMS 14C dating of a coral reef lagoon sediment core from southern South China Sea. Quat Sci Rev, 2006, 25: 2420-2430??
[3]  26 Yu K F, Zhao J X, Shi Q, et al. U-series dating of dead Porites corals in the South China Sea: Evidence for episodic coral mortality over the past two centuries. Quat Geochronol, 2006, 1: 129-141??
[4]  27 Yu K F, Zhao J X, Shi Q, et al. Reconstruction of storm/tsunami records over the last 4000 years using transported coral blocks and lagoon sediments in the southern South China Sea. Quat Int, 2009, 195: 128-137??
[5]  28 曾昭璇, 梁景芬, 丘世钧. 中国珊瑚礁地貌研究. 广州: 广东人民出版社, 1997. 197-200
[6]  29 Cooper T F, De''ath G, Fabricius K E, et al. Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Glob Change Bio, 2008, 14: 529-538??
[7]  30 De''ath G, Lough J M, Fabricius K E. Declining coral calcification on the Great Barrier reef supporting online material. 2009 www.sciencemag.org/cgi/content/full/323/5910/116/DC1
[8]  1 IPCC. Climate change 2007 Synthesis Report. Geneva: Intergovernmental Panel on Climate change, 2008
[9]  2 Hoegh-Guldberg O, Mumby P J, Hooten A J, et al. Coral reefs under rapid climate change and ocean acidification. Science, 2007, 318: 1737-1742??
[10]  3 Silverman J, Lazar B, Cao L, et al. Coral reefs may start dissolving when atmospheric CO2doubles. Geophys Res Lett, 2009, 36: L05606, doi: 10.1029/2008GL036282??
[11]  4 Kleypas J A, Buddemeier R W, Archer D, et al. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science, 1999, 284: 118-120??
[12]  5 Hoegh-Guldberg O. Climate change, coral bleaching and the future of the world''s coral reefs. Mar Freshw Res, 1999, 50: 839-866??
[13]  6 Andersson A J, Mackenzie F T, Ver L M. Solution of shallow-water carbonates: An insignificant buffer against rising atmospheric CO2. Geology, 2003, 31: 513-516??
[14]  7 Wilkinson C. Status of Coral Reefs of the World: 2004. Townsville, Australia: Australian Institute of Marine Science Press, 2004. 1-301??
[15]  8 McNeil B I, Matear R J, Barnes D J. Coral reef calcification and climate change: The effect of ocean warming. Geophys Res Lett, 2004, 31: L22309, doi: 10.1029/2004GL021541??
[16]  9 Lough J M, Barnes D J. Several centuries of variation in skeletal extension, density, and calcification in massive Porites colonies from the Great Barrier Reef: A proxy for seawater temperature and a background of variability against which to identify unnatural change. J Exp Mar Biol Ecol, 1997, 211: 29-67??
[17]  10 Lough J M, Barnes D J. Environmental controls on growth of the massive coral Porites. J Exp Mar Biol Ecol, 2000, 245: 225-243??
[18]  11 Bessat F, Buigues D. Two centuries of variation in coral growth in a massive Porites colony from Moorea (French Polynesia): A response of ocean-atmosphere variability from south central Pacific. Palaeogeogr Palaeoclimatol Palaeoecol, 2001, 175: 381-392??
[19]  12 Pelejero C, Calvo E, McCulloch M T, et al. Preindustrial to modern interdecadal variability in coral reef pH. Science, 2005, 309: 2207??
[20]  13 De''ath G, Lough J M, Fabricius K E. Declining coral calcification on the Great Barrier Reef. Science, 2009, 323: 116-119??
[21]  14 张远辉, 陈立奇. 南沙珊瑚礁对大气CO2含量上升的响应. 台湾海峡, 2006, 25: 68-76
[22]  15 王鑫, 王东晓, 高荣珍, 等. 南海珊瑚灰度记录中反映人类引起的气候变化信息. 科学通报, 2010, 55: 1304-1310
[23]  16 施祺, 赵美霞, 张乔民, 等. 海南三亚鹿回头造礁石珊瑚碳酸盐生产力的估算. 科学通报, 2009, 54:1471-14795
[24]  17 陈天然, 余克服, 施祺, 等. 全球变暖和核电站温排水对大亚湾滨珊瑚钙化的影响. 热带海洋学报, 2011, 30: 1-9
[25]  18 施祺, 张叶春, 孙东怀. 海南岛三亚滨珊瑚生长率特征及其与环境因素的关系. 海洋通报, 2002, 21: 31-38
[26]  19 Chalker B E, Barnes D, Isdale P. Calibration of X-ray densitometry for the measurement of coral skeletal density. Coral Reefs, 1985, 4: 95-100??
[27]  20 Helmle K P, Kohler K E, Dodge R E. Relative optical densitometry and the coral X-radiograph densitometry system: CoralXDS presented poster, Int Soc Reef Studies 2002 European Meeting, Cambridge, England, Sept. 4-7, 2002
[28]  21 Carricart-Ganivet J P, Barnes D J. Densitometry from digitized images of X-radiographs: Methodology for measurement of coral skeletal density. J Expe Mar Biol Ecol, 2007, 344: 67-72??
[29]  22 余克服, 陈特固, 黄鼎城, 等. 中国南沙群岛滨珊瑚δ18O 的高分辨率气候记录. 科学通报, 2001, 46: 1199-1203
[30]  23 余克服, 刘东生, 陈特固, 等. 中国南沙群岛滨珊瑚高分辨率δ13C 的环境记录. 自然科学进展, 2002, 12: 67-71
[31]  31 Etheridge D M, Steele L P, Langenfelds R L, et al. Natural and anthropogenic changes in atmospheric CO2over the last 1000 years

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133