Akaogi M, Kojitani H, Morita T, et al. 2008. Low-temperature heat capacities, entropies and high-pressure phase relations of MgSiO3 ilmenite and perovskite. Phys Chem Miner, 35: 287-297
[4]
Akaogi M, Navrotsky A, Yagi T, et al. 1987. Pyroxene-garnet transformation: Thermochemistry and elasticity of garnet solid solutions, and application to a pyrolite mantle. In: Manghnani M H, Syono Y, eds. High-Pressure Research in Mineral Physics. Washington DC: Amer Geophys Union. 251-260
[5]
Akoagi M. 2007. Phase transitions of minerals in the transition zone and upper part of the lower mantle. In: Ohtani E, ed. Advances in High-Pressure Mineralogy. Geol Soc Am Spec Paper, 421: 1-13
[6]
Andrews J, Deuss A. 2008. Detailed nature of the 660 km region of the mantle from global receiver function data. J Geophy Res, 113: B06304
[7]
Bertka C M, Fei Y. 1997. Mineralogy of the Martian interior up to core-mantle boundary pressures. J Geophys Res, 102: 5251-5264
[8]
Deuss A, Redfern S A T, Chambers K, et al. 2006. The nature of the 660-kilometer discontinuity in Earth''s mantle from global seismic observations of PP precursors. Science, 311: 198-201
[9]
Dziewonski A M, Anderson D L. 1981. Preliminary Reference Earth Model (PREM). Phys Earth Planet Inter, 25: 297-356
[10]
Fei Y, Bertka C M. 1999. Phase transitions in the Earth''s mantle and mantle mineralogy. In: Fei Y, Bertka C M, Mysen B O, eds. Mantle petrology: Field observations and high pressure experimentation: A tribute to Francis R Boyd. Geochem Soc Spec Publ, 6: 189-207
[11]
Fei Y, Van Orman J, Li J, et al. 2004. Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J Geophys Res, 109: B02305
[12]
Ferroir T, Beck P, Van de Moortèle B, et al. 2008. Akimotoite in the Tenham meteorite: Crystal chemistry and high pressure transformation mechanisms. Earth Planet Sci Lett, 275: 26-31
[13]
Gasparik T. 1989. Transformation of enstatite-diopside-jadeite pyroxenes to garnet. Contr Mineral Petr, 102: 389-405
[14]
Gilbert H J, Sheehan A F, Dueker K G, et al. 2003. Receiver functions in the western United States, with implications for upper mantle structure and dynamics. J Geophys Res, 108: 2229
[15]
Hirose K, Fei Y, Ono S, et al. 2001a. In situ measurements of the phase transition boundary in Mg3Al2Si3O12: Implications for the nature of the seismic discontinuities in the Earth''s mantle. Earth Planet Sci Lett, 184: 567-573
[16]
Hirose K, Komabayashi T, Murakami M, et al. 2001b. In situ measurements of the majorite-akimotoite-perovskite phase transition boundaries in MgSiO3. Geophys Res Lett, 28: 4351-4354
[17]
Irifune T, Koizumi T, Ando J. 1996. An experimental study of the garnet-perovskite transformation in the system MgSiO3-Mg3Al2Si3O12. Phys Earth Planet Inter, 96: 147-157
[18]
Irifune T, Nishiyama N, Kuroda K, et al. 1998. The postspinel phase boundary in Mg2SiO4 determined by in situ X-ray diffraction. Science, 279: 1698-1700
[19]
Ishii T, Kojitani H, Akaogi M. 2011. Post-spinel transitions in pyrolite and Mg2SiO4 and akimotoite-perovskite transition in MgSiO3: Precise comparison by high-pressure high-temperature experiments with multi-sample cell technique. Earth Planet Sci Lett, 309: 185-197
[20]
Saikia A, Frost D, Rubie D. 2008. Splitting of the 520-kilometer seimic discontinuity and chemical heterogeneity in the mantle. Nature, 139: 1515-1518
[21]
Sawamoto H. 1987. Phase diagram of MgSiO3 at pressures up to 24 GPa and temperatures up to 2200℃: Phase stability and properies of tetragonal garnet. In: Manghnani MH, Syono Y, eds. High-Pressure Research in Mineral Physics. Tokyo: Terra. 209-219
[22]
Shim S H, Duffy T S, Shen G. 2001. The post-spinel transformation in Mg2SiO4 and its relation to the 660-km seismic discontinuity. Nature, 411: 571-574
[23]
Simmons N A, Gurrola H. 2000. Multiple seismic discontinuities near the base of the transition zone in the Earth''s mantle. Nature, 405: 559-562
[24]
Tibi R, Wiens D A, Shiobara H, et al. 2007. Double seismic discontinuities at the base of the mantle transition zone near the Mariana slab. Geophys Res Lett, 34: L16316
[25]
van der Meijde M, van der Lee S, Giardini D. 2005. Seismic discontinuities in the Mediterranean mantle. Phys Earth Planet Inter, 148: 233-250
[26]
Yamazaki D, Yoshino T, Matsuzaki T, et al. 2009. Texture of (Mg, Fe)SiO3 perovskite and ferro-periclase aggregate: Implications for rheology of the lower mantle. Phys Earth Planet Inter, 174: 138-144
[27]
Yu Y G, Wentzcovitch R M, Tsuchiya T, et al. 2007. First principles investigation of the postspinel transition in Mg2SiO4. Geophys Res Lett, 34: L10306
[28]
Yu Y G, Wu Z, Wentzcovitch R M. 2008. a-b-g transformations in Mg2SiO4 in Earth''s transition zone. Earth Planet Sci Lett, 273: 115-122
[29]
Reynard B, Rubie D. 1996. High-pressure, high-temperature Raman spectroscopic study of ilmenite-type MgSiO3. Am Mineral, 81: 1092-1096
[30]
Ringwood A E, Major A. 1970. The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures. Phys Earth Planet Inter, 3: 89-108
[31]
Ringwood A E. 1962. A Model for the upper mantle. J Geophys Res, 67: 857-867
Agee C B. 1998. Phase transformations and seismic structure in the upper mantle and transition zone. Rev Mineral Geochem, 37: 165-203
[34]
Ai Y, Zheng T, Xu W, et al. 2003a. A complex 660 km discontinuity beneath northeast China. Earth Planet Sci Lett, 212: 63-71
[35]
Ai Y, Zheng T. 2003b. The upper mantle discontinuity structure beneath eastern China. Geophys Res Lett, 30: 2089
[36]
Akaogi M, Ito E, Navrotsky A. 1989. Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermochemical calculation, and geophysical application. J Geophys Res, 94: 15671-15685
[37]
Ito E, Takahashi E. 1989. Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. J Geophys Res, 94: 10637-10646
[38]
Katsura T, Yamada H, Nishikawa O, et al. 2004. Olivine-wadsleyite transition in the system (Mg, Fe)2SiO4. J Geophy Res, 109: B02209
[39]
Katsura T, Yamada H, Shinmei T, et al. 2003. Post-spinel transition in Mg2SiO4 determined by high P-T in situ X-ray diffractometry. Phys Earth Planet Inter, 136: 11-24
[40]
Kubo T, Ohtani E, Kato T, et a1. 2000. Formation of metastable assemblages and mechanisms of the grain-size reduction in the post-spinel transformation of Mg2SiO4. Geophys Res Lett, 27: 807-810
[41]
Kubo T, Ohtani E, Kato T, et a1. 2002. Mechanisms and kinetics of the post-spinel transformation in Mg2SiO4. Phys Earth Planet Inter, 129: 153-171
[42]
Liu L G. 1976. The post-spinel phase of forsterite. Nature, 262: 770-772
[43]
Ono S, Katsura T, Ito E, et al. 2001. In situ observation of ilmenite-perovskite phase transition in MgSiO3 using synchrotron radiation. Geophys Res Lett, 28: 835-838
[44]
Pacalo R, Gasparik T. 1990. Reversal of the orthoenstatite-clinoenstatite transition at high pressures and high temperatures. J Geophy Res, 95: 15853-15858