全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

地幔转换带底部橄榄石和辉石高压相变实验研究:对660km地震不连续面结构的启示

, PP. 1943-1951

Keywords: 橄榄石,辉石,高压相变,660km不连续面,地幔转换带,中国东部

Full-Text   Cite this paper   Add to My Lib

Abstract:

?橄榄石和辉石以及它们的高压相是地幔转换带主要矿物,系统研究橄榄石和辉石在转换带底部温度和压力条件下相变的差异是认识660km地震不连续面位置和形态的关键.本文使用多面砧压机开展了橄榄石和顽火辉石在压力为21.3~24.4GPa,温度为1600℃的相变实验研究.地幔转换带底部,橄榄石和顽火辉石相变主要的差异在于钙钛矿出现的压力不同.在橄榄石体系中,后尖晶石相分解发生在23.8GPa,与660km不连续面具有很好的对应关系;而在顽火辉石体系中,钙钛矿出现的压力小于23GPa.研究结果表明,橄榄石后尖晶石相变与辉石中钙钛矿的出现之间有约0.5~1GPa压力差.因此,在受大洋俯冲带影响地区(例如中国东部),辉石体系中发生的秋本石(钛铁矿)-钙钛矿的相变能够合理解释660km地震不连续面向上的起伏或分裂.

References

[1]  陈鸣. 2009. 冲击变质陨石橄榄石晶内高压多形转变特征与条件. 矿物学报, 29: 1-6
[2]  王雁宾. 2006. 地球内部物质物性的原位高温高压研究: 大体积压机与同步辐射源的结合. 地学前缘, 13: 1-36
[3]  Akaogi M, Kojitani H, Morita T, et al. 2008. Low-temperature heat capacities, entropies and high-pressure phase relations of MgSiO3 ilmenite and perovskite. Phys Chem Miner, 35: 287-297
[4]  Akaogi M, Navrotsky A, Yagi T, et al. 1987. Pyroxene-garnet transformation: Thermochemistry and elasticity of garnet solid solutions, and application to a pyrolite mantle. In: Manghnani M H, Syono Y, eds. High-Pressure Research in Mineral Physics. Washington DC: Amer Geophys Union. 251-260
[5]  Akoagi M. 2007. Phase transitions of minerals in the transition zone and upper part of the lower mantle. In: Ohtani E, ed. Advances in High-Pressure Mineralogy. Geol Soc Am Spec Paper, 421: 1-13
[6]  Andrews J, Deuss A. 2008. Detailed nature of the 660 km region of the mantle from global receiver function data. J Geophy Res, 113: B06304
[7]  Bertka C M, Fei Y. 1997. Mineralogy of the Martian interior up to core-mantle boundary pressures. J Geophys Res, 102: 5251-5264
[8]  Deuss A, Redfern S A T, Chambers K, et al. 2006. The nature of the 660-kilometer discontinuity in Earth''s mantle from global seismic observations of PP precursors. Science, 311: 198-201
[9]  Dziewonski A M, Anderson D L. 1981. Preliminary Reference Earth Model (PREM). Phys Earth Planet Inter, 25: 297-356
[10]  Fei Y, Bertka C M. 1999. Phase transitions in the Earth''s mantle and mantle mineralogy. In: Fei Y, Bertka C M, Mysen B O, eds. Mantle petrology: Field observations and high pressure experimentation: A tribute to Francis R Boyd. Geochem Soc Spec Publ, 6: 189-207
[11]  Fei Y, Van Orman J, Li J, et al. 2004. Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J Geophys Res, 109: B02305
[12]  Ferroir T, Beck P, Van de Moortèle B, et al. 2008. Akimotoite in the Tenham meteorite: Crystal chemistry and high pressure transformation mechanisms. Earth Planet Sci Lett, 275: 26-31
[13]  Gasparik T. 1989. Transformation of enstatite-diopside-jadeite pyroxenes to garnet. Contr Mineral Petr, 102: 389-405
[14]  Gilbert H J, Sheehan A F, Dueker K G, et al. 2003. Receiver functions in the western United States, with implications for upper mantle structure and dynamics. J Geophys Res, 108: 2229
[15]  Hirose K, Fei Y, Ono S, et al. 2001a. In situ measurements of the phase transition boundary in Mg3Al2Si3O12: Implications for the nature of the seismic discontinuities in the Earth''s mantle. Earth Planet Sci Lett, 184: 567-573
[16]  Hirose K, Komabayashi T, Murakami M, et al. 2001b. In situ measurements of the majorite-akimotoite-perovskite phase transition boundaries in MgSiO3. Geophys Res Lett, 28: 4351-4354
[17]  Irifune T, Koizumi T, Ando J. 1996. An experimental study of the garnet-perovskite transformation in the system MgSiO3-Mg3Al2Si3O12. Phys Earth Planet Inter, 96: 147-157
[18]  Irifune T, Nishiyama N, Kuroda K, et al. 1998. The postspinel phase boundary in Mg2SiO4 determined by in situ X-ray diffraction. Science, 279: 1698-1700
[19]  Ishii T, Kojitani H, Akaogi M. 2011. Post-spinel transitions in pyrolite and Mg2SiO4 and akimotoite-perovskite transition in MgSiO3: Precise comparison by high-pressure high-temperature experiments with multi-sample cell technique. Earth Planet Sci Lett, 309: 185-197
[20]  Saikia A, Frost D, Rubie D. 2008. Splitting of the 520-kilometer seimic discontinuity and chemical heterogeneity in the mantle. Nature, 139: 1515-1518
[21]  Sawamoto H. 1987. Phase diagram of MgSiO3 at pressures up to 24 GPa and temperatures up to 2200℃: Phase stability and properies of tetragonal garnet. In: Manghnani MH, Syono Y, eds. High-Pressure Research in Mineral Physics. Tokyo: Terra. 209-219
[22]  Shim S H, Duffy T S, Shen G. 2001. The post-spinel transformation in Mg2SiO4 and its relation to the 660-km seismic discontinuity. Nature, 411: 571-574
[23]  Simmons N A, Gurrola H. 2000. Multiple seismic discontinuities near the base of the transition zone in the Earth''s mantle. Nature, 405: 559-562
[24]  Tibi R, Wiens D A, Shiobara H, et al. 2007. Double seismic discontinuities at the base of the mantle transition zone near the Mariana slab. Geophys Res Lett, 34: L16316
[25]  van der Meijde M, van der Lee S, Giardini D. 2005. Seismic discontinuities in the Mediterranean mantle. Phys Earth Planet Inter, 148: 233-250
[26]  Yamazaki D, Yoshino T, Matsuzaki T, et al. 2009. Texture of (Mg, Fe)SiO3 perovskite and ferro-periclase aggregate: Implications for rheology of the lower mantle. Phys Earth Planet Inter, 174: 138-144
[27]  Yu Y G, Wentzcovitch R M, Tsuchiya T, et al. 2007. First principles investigation of the postspinel transition in Mg2SiO4. Geophys Res Lett, 34: L10306
[28]  Yu Y G, Wu Z, Wentzcovitch R M. 2008. a-b-g transformations in Mg2SiO4 in Earth''s transition zone. Earth Planet Sci Lett, 273: 115-122
[29]  Reynard B, Rubie D. 1996. High-pressure, high-temperature Raman spectroscopic study of ilmenite-type MgSiO3. Am Mineral, 81: 1092-1096
[30]  Ringwood A E, Major A. 1970. The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures. Phys Earth Planet Inter, 3: 89-108
[31]  Ringwood A E. 1962. A Model for the upper mantle. J Geophys Res, 67: 857-867
[32]  吴耀, 王雁宾, 张艳飞, 等. 2012. 地幔转换带橄榄石高压相变实验研究. 科学通报, 57: 542-549
[33]  Agee C B. 1998. Phase transformations and seismic structure in the upper mantle and transition zone. Rev Mineral Geochem, 37: 165-203
[34]  Ai Y, Zheng T, Xu W, et al. 2003a. A complex 660 km discontinuity beneath northeast China. Earth Planet Sci Lett, 212: 63-71
[35]  Ai Y, Zheng T. 2003b. The upper mantle discontinuity structure beneath eastern China. Geophys Res Lett, 30: 2089
[36]  Akaogi M, Ito E, Navrotsky A. 1989. Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermochemical calculation, and geophysical application. J Geophys Res, 94: 15671-15685
[37]  Ito E, Takahashi E. 1989. Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. J Geophys Res, 94: 10637-10646
[38]  Katsura T, Yamada H, Nishikawa O, et al. 2004. Olivine-wadsleyite transition in the system (Mg, Fe)2SiO4. J Geophy Res, 109: B02209
[39]  Katsura T, Yamada H, Shinmei T, et al. 2003. Post-spinel transition in Mg2SiO4 determined by high P-T in situ X-ray diffractometry. Phys Earth Planet Inter, 136: 11-24
[40]  Kubo T, Ohtani E, Kato T, et a1. 2000. Formation of metastable assemblages and mechanisms of the grain-size reduction in the post-spinel transformation of Mg2SiO4. Geophys Res Lett, 27: 807-810
[41]  Kubo T, Ohtani E, Kato T, et a1. 2002. Mechanisms and kinetics of the post-spinel transformation in Mg2SiO4. Phys Earth Planet Inter, 129: 153-171
[42]  Liu L G. 1976. The post-spinel phase of forsterite. Nature, 262: 770-772
[43]  Ono S, Katsura T, Ito E, et al. 2001. In situ observation of ilmenite-perovskite phase transition in MgSiO3 using synchrotron radiation. Geophys Res Lett, 28: 835-838
[44]  Pacalo R, Gasparik T. 1990. Reversal of the orthoenstatite-clinoenstatite transition at high pressures and high temperatures. J Geophy Res, 95: 15853-15858

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133