全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非均匀介质孔隙流体参数地震散射波反演

, PP. 1934-1942

Keywords: 非均匀介质,孔隙流体参数,地震散射,叠前地震反演

Full-Text   Cite this paper   Add to My Lib

Abstract:

?弹性波逆散射是非均匀介质参数反演的有效途径.本文从弹性波逆散射理论出发,利用微扰理论和稳相法,将非均匀介质参数视为背景介质与扰动介质参数的叠加,建立了纵波散射系数和非均匀介质中背景介质与扰动介质孔隙流体参数,剪切模量与密度间的直接关系.进而发展了一种非均匀介质孔隙流体参数叠前地震贝叶斯反演方法.该方法假设模型参数(扰动介质与背景介质孔隙流体参数,剪切模量与密度的比值)服从柯西分布,反演目标似然函数服从高斯分布,并采用平滑初始模型约束提高反演稳定性.模型和实际资料处理表明,该反演方法能够稳定合理的直接从叠前地震资料中获取孔隙流体参数,提供了一种高可靠性的非均匀介质流体描述方法.

References

[1]  陈建江, 印兴耀. 2007. 基于贝叶斯理论的AVO三参数波形反演. 地球物理学报, 50: 1251-1260
[2]  刘福平, 孟宪军, 王玉梅, 等. 2010. 反演纵横波速度的 Jacobian 矩阵及精确计算方法. 中国科学: 地球科学, 40: 1608-1616
[3]  杨培杰, 印兴耀. 2008. 非线性二次规划贝叶斯叠前反演. 地球物理学报, 51: 1876-1882
[4]  Beylkin G, Burridge R. 1990. Linearized inverse scattering problems in acoustics and elasticity. Wave motion, 12: 15-52
[5]  Biot M. 1956. General solutions of the equations of elasticity and consolidation for a porous material. J appl Mech, 23: 91-96
[6]  Biot M. 1962. Generalized theory of acoustic propagation in porous dissipative media. J Acoust Soc Am, 34: 1254-1264
[7]  Buland A, Omre H. 2003. Bayesian linearized AVO inversion. Geophysics, 68: 185-198
[8]  Burns D R, Willis M E, Toksoz M N, et al. 2007. Fracture properties from seismic scattering. The Leading Edge, 26: 1186-1196
[9]  Cerveny V. 2000. Seismic Ray Theory. Cambridge: Cambridge University Press. 124
[10]  Downton J E, Lines L R. 2004. Three term AVO waveform inversion. Seg Tech Prog Exp Abs, 23: 215-218
[11]  Gassmann F. 1951. Uber die elastizitat poroser medien. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich, 96: 1-23
[12]  Hudson J. 1968. The scattering of elastic waves by granular media. Q J Mech Appl Math, 21: 487-502
[13]  Hudson J. 1977. Scattered waves in the coda of P. J Geophys, 43: 8-18
[14]  Kaslilar A. 2007. Inverse scattering of surface waves: Imaging of near-surface heterogeneities. Geophys J Int, 171: 352-367
[15]  Liu E R, Chapman M, Zhang Z J, et al. 2006. Frequency-dependent anisotropy: Effects of multiple fracture sets on shear-wave polarizations. Wave motion, 44: 44-57
[16]  Liu E R, Queen J H, Zhang Z J, et al. 2000. Simulation of multiple scattering of seismic waves by spatially distributed inclusions. Sci China E-Technol Sci, 43: 387-394
[17]  Liu E R, Zhang Z J. 2001. Numerical study of elastic wave scattering by cracks or inclusions using the boundary integral equation method. J of Comput Acoust, 9: 1039-1054
[18]  Miles J W. 1960. Scattering of elastic waves by small inhomogeneities. Geophysics, 25: 642-648
[19]  Mora P, Sarwar A K M, Smith D L. 1987. Nonlinear two-dimensional elastic inversion of multioffset seismic data. Geophysics, 52: 1211-1228
[20]  Rajan S D, Frisk G V. 1989. A comparison between the Born and Rytov approximations for the inverse backscattering problem. Geophysics, 54: 864-871
[21]  Russell B H, Hedlin K, Hilterman F J, et al. 2003. Fluid-property discrimination with AVO: A Biot-Gassmann perspective. Geophysics, 68: 29-39
[22]  Scarpetta E, Tibullo V. 2008. On the oblique penetration of elastic waves into a finite number of equally spaced periodic arrays of obstacles. Wave motion, 45: 518-539
[23]  Shaw R K, Sen M K. 2004. Born integral, stationary phase and linearized reflection coefficients in weak anisotropic media. Geophys J Int, 158: 225-238
[24]  Smith G C, Gidlow P M. 1987. Weighted stacking for rock property estimation and detection of gas. Geophys Prospect, 35: 993-1014
[25]  Stolt R H, Weglein A B, Abd Elhadi Y E. 1985. Migration and inversion of seismic data. Geophysics, 50: 2458-2472
[26]  Weglein A B, 1993. Nonlinear inverse scattering for multiple attenuation. Society of Photo-Optical Instrumentation Engineers Conference Series. 158-160
[27]  Wu R S, Aki K. 1985. Scattering characteristics of elastic waves by an elastic heterogeneity. Geophysics, 50: 582-595
[28]  Zhang H, Weglein A B. 2009a. Direct nonlinear inversion of 1D acoustic media using inverse scattering subseries. Geophysics, 74: 29-39
[29]  Zhang H, Weglein A B. 2009b. Direct nonlinear inversion of multiparameter 1D elastic media using the inverse scattering series. Geophysics, 74: 15-27
[30]  Zoeppritz K, Geiger L, 1919. Erdbebenwellen VIII B, Uber Reflexion and durchgang seismischer wellen duch unstetigkeitsflachen. Gottinger Nachr, 1: 66-84
[31]  Zong Z Y, Yin X Y, Wu G C. 2012a. Elastic impedance variation with angle inversion for elastic parameters. J Geophys Eng, 9: 247
[32]  Zong Z Y, Yin X Y, Wu G C. 2012b. AVO inversion and poroelasticity with P-and S-wave moduli. Geophysics, 77: N29-N36

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133