Schrag D. 1999. Rapid analysis of high-precision Sr/Ca ratios in coral and other marine carbonates. Paleoceanography, 14: 97-102
[2]
Shen G T, Cole J E, Lea D W, et al. 1992. Surface ocean variability at Galapagos from 1936-1982: Calibration of geochemical tracers in corals. Paleoceanography, 7: 563-588
[3]
Sinclair D J, Kinsley L P J, McCulloch M T. 1998. High resolution analysis of trace elements in corals by laser ablation ICP-MS. Geochim Cosmochim Acta, 62: 1889-1901
Alibert C, McCulloch M T. 1997. Strontium/calcium ratios in modern Porites corals from the Great Barriers Reef as a proxy for sea surface temperature: Calibration of the thermometer and monitoring ENSO. Paleoceanography, 12: 345-363
[15]
Armid A, Asami R, Fahmiati T, et al. 2011. Seawater temperature proxies based on DSr, DMg, and DU from culture experiments using the branching coral Porites cylindrica. Geochim Cosmochim Acta, 75: 4273-4285
[16]
Corrège T. 2006. Sea surface temperature and salinity reconstruction from coral geochemical tracers. Paleogeogr Paleoclimatol Paleoecol, 232: 408-428
[17]
DeLong K L, Flannery J A, Maupin C R, et al. 2011. A coral Sr/Ca calibration and replication study of two massive corals from the Gulf of Mexico. Palaeogeogr Palaeoclimatol Palaeoecol, 307: 117-128
[18]
de Villiers S, Shen G T, Nelson B K. 1994. The Sr/Ca-temperature relationship in coralline aragonite: Influence of variability in (Sr/Ca)seawater and skeletal growth parameters. Geochim Cosmochim Acta, 58: 192-208
[19]
de Villiers S, Nelson B K, Chivas A R. 1995. Biological controls on coral Sr/Ca and δ18O reconstructions of sea temperatures. Science, 269: 1247-1249
[20]
de Villiers S. 1999. Seawater strontium and St/Ca variability in the Atlantic and Pacific oceans. Earth Planet Sci Lett, 71: 623-634
[21]
H?nisch B, Hemming N G, Grottoli A G, et al. 2004. Assessing scleractinian corals as recorders for paleo-pH: Empirical calibration and vital effects. Geochem Cosmochem Acta, 68: 3675-3685
[22]
Inoue M, Suzuki A, Nohara M, et al. 2007. Empirical assessment of coral Sr/Ca and Mg/Ca ratios as climate proxies using colonies grown at different temperature. Geophys Res Lett, 34: L12611, doi:10.1029/2007GL029628
[23]
Juillet-Leclerc A, Gattuso J P, Montaggioni L F, et al. 1997. Seasonal variation of primary productivity and skeletal δ13C and δ18O in the zooxanthellate scleractinian coral Acropora formosa. Mar Ecol-Prog Ser, 157: 109-117
[24]
Juillet-Leclerc A, Reynaud S, Rollion-Bard C, et al. 2009. Oxygen isotopic signature of the skeletal microstructures in cultured corals: Identification of vital effects. Geochim Cosmochim Acta, 73: 5320-5332
[25]
Reynaud-Vaganay S, Gattuso J-P, Cuif J P, et al. 1999. A novel culture technique for scleractinian corals: Application to investigate changes in skeletal δ18O as a function of temperature. Mar Ecol Prog Ser, 180: 121-130
[26]
Fallon S J, McCulloch M T, Alibert C. 2003. Examining water temperature proxies in Porites corals from the Great Barrier Reef: A cross-shelf comparison. Coral Reefs, 22: 389-404
[27]
Fallon S J, McCulloch M T, van Woesik R, et al. 1999. Coral at their latitudinal limits: Laser ablation trace element systematic in Porites from Shirigai Bay, Japan. Earth Planet Sci Lett, 172: 221-238.
[28]
Grottoli A G, Rodrigues L J, Matthews K A, et al. 2005. Pre-treatment effects on coral skeletal δ13C and δ18O. Chem Geol, 221: 225-242
[29]
Grossman E L, Ku T L. 1986. Oxygen and carbon isotope fractionation in biogenic aragonite: Temperature effects. Chem Geol, 59: 59-74
[30]
Klein R, Tudhope A W, Chilcott C P, et al. 1997. Evaluating southern Red Sea corals as a proxy record for the Asian monsoon. Earth Plant Sci Lett, 148: 381-394
[31]
Klein R T, Lohman K C, Thayer C W. 1996. Bivalve skeletal record sea-surface temperature and δ18O via Mg/Ca and 18O/16ratio. Geology, 24: 415-418
[32]
Le Bec N, Juillet-Leclerc A, Corrège T, et al. 2000. A coral δ18O record of ENSO driven sea surface salinity variability in Fiji (south-western tropical Pacific). Geophys Res Lett, 27: 3897-3900
[33]
Leder J J, Swart P K, Szmant A M, et al. 1996. The origin of variations in the isotopic record of scleractinian corals: 1 Oxygen. Geochim Cosmochim Acta, 60: 2857-2870
[34]
Marshall J F, McCulloch M T. 2002. An assessment of the Sr/Ca ratio in shallow hermatypic corals as a proxy for sea surface temperature. Geochim Cosmochim Acta, 66: 3263-3280
[35]
McCulloch M T, Gagan M K, Mortimer G E, et al. 1994. A high resolution Sr/Ca and δ18O coral record from the great barrier reef, Australia and the 1982-1983 El Ni?o. Geochim Cosmochim Acta, 58: 2747-2754
[36]
McCulloch M T, Mortimer G, Esat T, et al. 1996. High resolution windows into early Holocene climate: Sr/Ca coral records from the Huon Penin Beck sula. Earth Planet Sci Lett, 138: 169-178
[37]
Mitsuguchi T, Matsumoto E, Abe O, et al. 1996. Mg/Ca thermometry in coral skeletons. Science, 274: 961-963
[38]
Mitsuguchi T, Matsumoto E, Uchida T, et al. 1998. An attempt to recover middle Holoeene sea surface temperature in Okinawa region from coral Mg/Ca and Sr/Ca ratios. Proceedings of the Third International Marine Science Symposium on Coral Climatology by Annual Bands, 23: 50-56
[39]
Mitsuguchi T, Uchida T, Matsumoto E, et al. 2001. Variations in Mg/Ca, Na/Ca, and Sr/Ca ratios of coral skeletons with chemical treatments: Implications for carbonate geochemistry. Geochim Cosmochim Acta, 65: 2865-2874
[40]
Nürnberg D, Bijma J, Hemleben C. 1996. Assesing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperature. Geochim Conmochim Acta, 60: 803-814
[41]
Quinn T M, Sampson D E. 2002. A multiproxy approach to reconstructing sea surface conditions using coral skeleton geochemistry. Paleoceanograpgy, 17: 1062, doi:10.1029/2000PA000528
[42]
Quinn T M, Taylor F W, Crowley T J, et al. 1996. Evaluation of sampling resolution in coral stable isotope records: A case study using records from New Caledonia and Tarawa. Paleoocenography, 11: 529-542
[43]
Reynaud S, Ferrier-Pagès C, Meibom A, et al. 2007. Light and temperature effects on Sr/Ca and Mg/Ca ratios in the scleractinian coral Acropora sp. Geochim Cosmochim Acta, 71: 354-362
[44]
Suzuki A, Hibino K, Iwase A, et al. 2005. Intercolony variability of skeletal oxygen and carbon isotope signatures of cultured Porites corals: Temperature-controlled experiments. Geochim Cosmochim Acta, 69: 4453-4462
[45]
Takesue R T, Geen A V. 2004. Mg/Ca, Sr/Ca and stable isotopes in modern and Holocene Protothaca staminea shells from a northern California coastal upwelling region. Geochim Cosmochim Acta, 68: 3845-3861
[46]
Watanabe T, Gagan M K, Correge T, et al. 2003. Oxygen isotope systematics in Diploastrea heliopora: New coral archive of tropical paleoclimate. Geochm Cosmochim Acta, 67: 1349-1358
[47]
Watanabe T, Winter A, Oba T. 2001. Seasonal changes in sea surface temperature and salinity during the Little Ice Age in the Caribbean Sea deduced from Mg/Ca and 18O/16O ratios in corals. Mar Geol, 173: 21-35
[48]
Weber J N, Woodhead P M J. 1972. Temperature dependence of Oxygen-18 concentration in reef coral carbonates. J Geophys Res, 77: 463-473
[49]
Wei G J, Sun M, Li X H, et al. 2000. Mg/Ca, Sr/Ca and U/Ca ratios of a Porites coral from Sanya Bay, Hainan Island, South China Sea and their relationships to sea surface temperature. Paleogeogr Paleoclimatol Paleoecol, 162: 59-74
[50]
Weil S M, Buddemeier R W, Smith S V, et al. 1981. The stable isotopic composition of coral skeletons: Control by environmental variables. Geochim Cosmochim Acta, 45: 1147-1153
[51]
Yu K F, Zhao J X, Wei G J, et al. 2005a. δ18O, Sr/Ca and Mg/Ca records of Porites lutea corals from Leizhou Peninsula, northern South China Sea, and their applicability as paleoclimatic indicators. Paleogeogr Paleoclimatol Paleoecol, 218: 57-73
[52]
Yu K F, Zhao J X, Wei G J, et al. 2005b. Mid-late Holocene monsoon climate retrieved from seasonal Sr/Ca and δ18O records of Porites lutea corals at Leizhou Peninsila, northern coast of South China Sea. Global Planet Change, 47: 301-316