全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

鹿角珊瑚δ18O,Sr/Ca和Mg/Ca比值与海水表面温度的相关性研究——不同海水温度下的珊瑚养殖实验

, PP. 2049-2061

Keywords: 珊瑚养殖,海水温度,氧同位素,微量元素比值

Full-Text   Cite this paper   Add to My Lib

Abstract:

?珊瑚δ18Oc,Sr/Ca和Mg/Ca比值是海水表面温度SST的指示剂,需要采用室内的珊瑚养殖实验给于验证.本文利用新型的室内珊瑚养殖水循环系统和新生长珊瑚培植方法,进行了不同海水温度T(21~28℃)下的鹿角珊瑚的养殖实验,对养殖珊瑚δ18Oc,Sr/Ca和Mg/Ca进行了测定.结果表明,养殖珊瑚δ18Oc,Sr/Ca和Mg/Ca与T均呈现出明显的相关性,线性回归曲线为δ18Oc(‰)=-0.1427×T(℃)-0.1495(n=18,r=0.955,P<0.0001),斜率-0.1427‰/℃落在文献发表值范围(-0.13~-0.29‰/℃)的低端,Sr/Ca比值随T的上升而下降.而对Mg/Ca比值则相反,随T的升高而增加,Sr/Ca与Mg/Ca呈现负相关关系,其线性回归曲线分别为Sr/Ca(mmol/mol)=-0.04156×T+10.59(n=15,r=0.789,P<0.005),Mg/Ca(mmol/mol)=0.04974×T+2.339(n=17,r=0.457,P<0.05),表明Mg/Ca和Sr/Ca每增加1mmol/mol时,记录的T分别升高5.19℃和降低15.62℃,这些数值均明显低于文献所发表值,文章对此进行了初步讨论.

References

[1]  Schrag D. 1999. Rapid analysis of high-precision Sr/Ca ratios in coral and other marine carbonates. Paleoceanography, 14: 97-102
[2]  Shen G T, Cole J E, Lea D W, et al. 1992. Surface ocean variability at Galapagos from 1936-1982: Calibration of geochemical tracers in corals. Paleoceanography, 7: 563-588
[3]  Sinclair D J, Kinsley L P J, McCulloch M T. 1998. High resolution analysis of trace elements in corals by laser ablation ICP-MS. Geochim Cosmochim Acta, 62: 1889-1901
[4]  黎广钊, 梁文, 农华琼, 等. 2004. 涠洲岛珊瑚礁生态环境条件初步研究. 广西科学, 11: 379-384
[5]  刘羿, 彭子成, 程继满, 等. 2006. 海南岛东部海域滨珊瑚Sr/Ca比值温度计及其影响因素初探. 第四纪研究, 26: 470-476
[6]  吕炳全, 王红罡, 大场忠道, 等. 2002. 海南岛沙老岸礁区滨珊瑚氧、碳同位素对气候的记录. 地球化学, 31: 315-320
[7]  宋少华, 周卫健, 彭子成, 等. 2006. 海南岛滨珊瑚δ18O对环境条件的响应. 海洋地质与第四纪地质, 26: 23-28
[8]  韦刚健, 余克服, 李献华, 等. 2004. 南海北部珊瑚Sr/Ca和Mg/Ca温度计及高分辨率SST记录重建尝试. 第四纪研究, 24: 325-331
[9]  肖应凯, 廖庆强, 鲁昆全, 等. 2010a. 一种新型的科研用室内珊瑚养殖方法. 中国专利, ZL 201010106943.4. 2011-10-19
[10]  肖应凯, 马云麒, 张艳灵, 等. 2010b. 一种科研用室内珊瑚养殖中新生长珊瑚样品的培植方法. 中国专利, CN201010534970.1, 2012-8-15
[11]  余克服. 1998. 造礁珊瑚δ18O记录的过去气候研究进展. 海洋学报, 17: 72-78
[12]  余克服, 陈特固, 黄鼎成, 等. 2001. 中国南沙群岛滨珊瑚δ18O的高分辨气候记录. 科学通报, 46: 1199-1203
[13]  余克服, 黄耀生, 陈特固, 等. 1999. 雷州半岛造礁珊瑚Porites lutea月分辨率的δ18O温度计研究. 第四纪研究, 19: 67-72
[14]  Alibert C, McCulloch M T. 1997. Strontium/calcium ratios in modern Porites corals from the Great Barriers Reef as a proxy for sea surface temperature: Calibration of the thermometer and monitoring ENSO. Paleoceanography, 12: 345-363
[15]  Armid A, Asami R, Fahmiati T, et al. 2011. Seawater temperature proxies based on DSr, DMg, and DU from culture experiments using the branching coral Porites cylindrica. Geochim Cosmochim Acta, 75: 4273-4285
[16]  Corrège T. 2006. Sea surface temperature and salinity reconstruction from coral geochemical tracers. Paleogeogr Paleoclimatol Paleoecol, 232: 408-428
[17]  DeLong K L, Flannery J A, Maupin C R, et al. 2011. A coral Sr/Ca calibration and replication study of two massive corals from the Gulf of Mexico. Palaeogeogr Palaeoclimatol Palaeoecol, 307: 117-128
[18]  de Villiers S, Shen G T, Nelson B K. 1994. The Sr/Ca-temperature relationship in coralline aragonite: Influence of variability in (Sr/Ca)seawater and skeletal growth parameters. Geochim Cosmochim Acta, 58: 192-208
[19]  de Villiers S, Nelson B K, Chivas A R. 1995. Biological controls on coral Sr/Ca and δ18O reconstructions of sea temperatures. Science, 269: 1247-1249
[20]  de Villiers S. 1999. Seawater strontium and St/Ca variability in the Atlantic and Pacific oceans. Earth Planet Sci Lett, 71: 623-634
[21]  H?nisch B, Hemming N G, Grottoli A G, et al. 2004. Assessing scleractinian corals as recorders for paleo-pH: Empirical calibration and vital effects. Geochem Cosmochem Acta, 68: 3675-3685
[22]  Inoue M, Suzuki A, Nohara M, et al. 2007. Empirical assessment of coral Sr/Ca and Mg/Ca ratios as climate proxies using colonies grown at different temperature. Geophys Res Lett, 34: L12611, doi:10.1029/2007GL029628
[23]  Juillet-Leclerc A, Gattuso J P, Montaggioni L F, et al. 1997. Seasonal variation of primary productivity and skeletal δ13C and δ18O in the zooxanthellate scleractinian coral Acropora formosa. Mar Ecol-Prog Ser, 157: 109-117
[24]  Juillet-Leclerc A, Reynaud S, Rollion-Bard C, et al. 2009. Oxygen isotopic signature of the skeletal microstructures in cultured corals: Identification of vital effects. Geochim Cosmochim Acta, 73: 5320-5332
[25]  Reynaud-Vaganay S, Gattuso J-P, Cuif J P, et al. 1999. A novel culture technique for scleractinian corals: Application to investigate changes in skeletal δ18O as a function of temperature. Mar Ecol Prog Ser, 180: 121-130
[26]  Fallon S J, McCulloch M T, Alibert C. 2003. Examining water temperature proxies in Porites corals from the Great Barrier Reef: A cross-shelf comparison. Coral Reefs, 22: 389-404
[27]  Fallon S J, McCulloch M T, van Woesik R, et al. 1999. Coral at their latitudinal limits: Laser ablation trace element systematic in Porites from Shirigai Bay, Japan. Earth Planet Sci Lett, 172: 221-238.
[28]  Grottoli A G, Rodrigues L J, Matthews K A, et al. 2005. Pre-treatment effects on coral skeletal δ13C and δ18O. Chem Geol, 221: 225-242
[29]  Grossman E L, Ku T L. 1986. Oxygen and carbon isotope fractionation in biogenic aragonite: Temperature effects. Chem Geol, 59: 59-74
[30]  Klein R, Tudhope A W, Chilcott C P, et al. 1997. Evaluating southern Red Sea corals as a proxy record for the Asian monsoon. Earth Plant Sci Lett, 148: 381-394
[31]  Klein R T, Lohman K C, Thayer C W. 1996. Bivalve skeletal record sea-surface temperature and δ18O via Mg/Ca and 18O/16ratio. Geology, 24: 415-418
[32]  Le Bec N, Juillet-Leclerc A, Corrège T, et al. 2000. A coral δ18O record of ENSO driven sea surface salinity variability in Fiji (south-western tropical Pacific). Geophys Res Lett, 27: 3897-3900
[33]  Leder J J, Swart P K, Szmant A M, et al. 1996. The origin of variations in the isotopic record of scleractinian corals: 1 Oxygen. Geochim Cosmochim Acta, 60: 2857-2870
[34]  Marshall J F, McCulloch M T. 2002. An assessment of the Sr/Ca ratio in shallow hermatypic corals as a proxy for sea surface temperature. Geochim Cosmochim Acta, 66: 3263-3280
[35]  McCulloch M T, Gagan M K, Mortimer G E, et al. 1994. A high resolution Sr/Ca and δ18O coral record from the great barrier reef, Australia and the 1982-1983 El Ni?o. Geochim Cosmochim Acta, 58: 2747-2754
[36]  McCulloch M T, Mortimer G, Esat T, et al. 1996. High resolution windows into early Holocene climate: Sr/Ca coral records from the Huon Penin Beck sula. Earth Planet Sci Lett, 138: 169-178
[37]  Mitsuguchi T, Matsumoto E, Abe O, et al. 1996. Mg/Ca thermometry in coral skeletons. Science, 274: 961-963
[38]  Mitsuguchi T, Matsumoto E, Uchida T, et al. 1998. An attempt to recover middle Holoeene sea surface temperature in Okinawa region from coral Mg/Ca and Sr/Ca ratios. Proceedings of the Third International Marine Science Symposium on Coral Climatology by Annual Bands, 23: 50-56
[39]  Mitsuguchi T, Uchida T, Matsumoto E, et al. 2001. Variations in Mg/Ca, Na/Ca, and Sr/Ca ratios of coral skeletons with chemical treatments: Implications for carbonate geochemistry. Geochim Cosmochim Acta, 65: 2865-2874
[40]  Nürnberg D, Bijma J, Hemleben C. 1996. Assesing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperature. Geochim Conmochim Acta, 60: 803-814
[41]  Quinn T M, Sampson D E. 2002. A multiproxy approach to reconstructing sea surface conditions using coral skeleton geochemistry. Paleoceanograpgy, 17: 1062, doi:10.1029/2000PA000528
[42]  Quinn T M, Taylor F W, Crowley T J, et al. 1996. Evaluation of sampling resolution in coral stable isotope records: A case study using records from New Caledonia and Tarawa. Paleoocenography, 11: 529-542
[43]  Reynaud S, Ferrier-Pagès C, Meibom A, et al. 2007. Light and temperature effects on Sr/Ca and Mg/Ca ratios in the scleractinian coral Acropora sp. Geochim Cosmochim Acta, 71: 354-362
[44]  Suzuki A, Hibino K, Iwase A, et al. 2005. Intercolony variability of skeletal oxygen and carbon isotope signatures of cultured Porites corals: Temperature-controlled experiments. Geochim Cosmochim Acta, 69: 4453-4462
[45]  Takesue R T, Geen A V. 2004. Mg/Ca, Sr/Ca and stable isotopes in modern and Holocene Protothaca staminea shells from a northern California coastal upwelling region. Geochim Cosmochim Acta, 68: 3845-3861
[46]  Watanabe T, Gagan M K, Correge T, et al. 2003. Oxygen isotope systematics in Diploastrea heliopora: New coral archive of tropical paleoclimate. Geochm Cosmochim Acta, 67: 1349-1358
[47]  Watanabe T, Winter A, Oba T. 2001. Seasonal changes in sea surface temperature and salinity during the Little Ice Age in the Caribbean Sea deduced from Mg/Ca and 18O/16O ratios in corals. Mar Geol, 173: 21-35
[48]  Weber J N, Woodhead P M J. 1972. Temperature dependence of Oxygen-18 concentration in reef coral carbonates. J Geophys Res, 77: 463-473
[49]  Wei G J, Sun M, Li X H, et al. 2000. Mg/Ca, Sr/Ca and U/Ca ratios of a Porites coral from Sanya Bay, Hainan Island, South China Sea and their relationships to sea surface temperature. Paleogeogr Paleoclimatol Paleoecol, 162: 59-74
[50]  Weil S M, Buddemeier R W, Smith S V, et al. 1981. The stable isotopic composition of coral skeletons: Control by environmental variables. Geochim Cosmochim Acta, 45: 1147-1153
[51]  Yu K F, Zhao J X, Wei G J, et al. 2005a. δ18O, Sr/Ca and Mg/Ca records of Porites lutea corals from Leizhou Peninsula, northern South China Sea, and their applicability as paleoclimatic indicators. Paleogeogr Paleoclimatol Paleoecol, 218: 57-73
[52]  Yu K F, Zhao J X, Wei G J, et al. 2005b. Mid-late Holocene monsoon climate retrieved from seasonal Sr/Ca and δ18O records of Porites lutea corals at Leizhou Peninsila, northern coast of South China Sea. Global Planet Change, 47: 301-316

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133