全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

煤储层分形孔隙结构中流体运移格子Boltzmann模拟

, PP. 1984-1995

Keywords: 分形孔隙结构,多孔介质,格子波尔兹曼模型,煤储层,煤层气

Full-Text   Cite this paper   Add to My Lib

Abstract:

?耦合理论模型与数值模拟方法,详细分析了煤储层孔隙结构分形特征对煤层气运移的控制作用.首先,采用Menger海绵体构造思想模拟了三维煤岩介质的非线性孔隙结构;随后,借助多孔介质渗透率的串联,并联模式预测模型,推导出分形多孔介质渗透率同孔径分布特征之间的关系,并采用格子波尔兹曼方法验证了其有效性.基于耦合方法,系统分析了分形多孔介质孔隙度ψ,孔隙结构分形维数Db,孔径范围[rmin,rmax]等参数对其渗透率k的影响,结果表明:①最大孔径rmax形成的通道主宰k,呈近2次方关系;②最大孔径同最小孔径比越大,渗透率越高;③Db与k之间呈负幂乘关系,并表现出分段特征,拐点为Db=2.5附近.综合以上分析结果,推演出分形多孔介质渗透率预测模型为,其中为常量,n为接近2的常量,f是同孔隙结构信息相关的表达式.最后,本文还讨论了Db=2时,本文预测模型与Kozeny和Carman模型k=Crn的等效性.

References

[1]  傅雪海, 秦勇, 薛秀谦, 等. 2001. 煤储层孔、裂隙系统分形研究. 中国矿业大学学报(自然科学版), 30: 225-228
[2]  郭照立, 郑楚光. 2009. 格子 boltzmann 方法的原理及应用. 北京: 科学出版社
[3]  何雅玲, 王勇, 李庆. 2009. 格子 boltzmann 方法的理论及应用. 北京: 科学出版社
[4]  金毅. 2011. 煤微观结构描述及其输运属性数值模拟分析. 博士学位论文. 北京: 北京大学
[5]  金毅, 宋慧波, 潘结南, 等. 2013. 煤微观结构三维表征及其孔-渗时空演化模式数值分析. 岩石力学与工程学报, 32(增刊1): 2632-2641
[6]  陆秋琴. 2010. 地下煤矿瓦斯运移数值模拟及积聚危险性评价研究. 博士学位论文. 西安: 西安建筑科技大学
[7]  Clarkson C R, Bustin R M. 1999. The effect of pore structure and gas pressure upon the transport properties of coal: A laboratory and modeling study. 1. Isotherms and pore volume distributions. Fuel, 78: 1333-1344
[8]  Connell L D, Lu M, Pan Z. 2010. An analytical coal permeability model for tri-axial strain and stress conditions. Int J Coal Geol, 84: 103-114
[9]  Croce G, D Agaro P, Nonino C. 2007. Three-dimensional roughness effect on microchannel heat transfer and pressure drop. Int J Heat Mass Transf, 50: 5249-5259
[10]  Dünweg B, Ladd A J C. 2009a. Lattice boltzmann simulations of soft matter systems. Adv Polym Sci, 221: 89-166
[11]  Dünweg B, Schiller U D, Ladd A J C. 2007. Statistical mechanics of the fluctuating lattice boltzmann equation. Phys Rev E, 76: 36701-36704
[12]  Dünweg B, Schiller U D, Ladd A J C. 2009b. Progress in the understanding of the fluctuating lattice boltzmann equation. Comput Phys Commun, 180: 605-608
[13]  Friesen W I, Mikula R J. 1987. Fractal dimensions of coal particles. J Colloid Interf Sci, 120: 263-271
[14]  Fu X, Qin Y, Wang G G X, et al. 2009. Evaluation of coal structure and permeability with the aid of geophysical logging technology. Fuel, 88: 2278-2285
[15]  Fu X, Qin Y, Zhang W, et al. 2005. Fractal classification and natural classification of coal pore structure based on migration of coal bed methane. Chin Sci Bull, 50: 66-71
[16]  Gilman A, Beckie R. 2000. Flow of coal-bed methane to a gallery. Transp Porous Media, 41: 1-16
[17]  Guo Z, Zhao T S. 2005. A lattice boltzmann model for convection heat transfer in porous media. Numer Heat Tr B-Fund, 47: 157-177
[18]  Huai X, Wang W, Li Z. 2007. Analysis of the effective thermal conductivity of fractal porous media. Appl Therm Eng, 27: 2815-2821
[19]  Jacob B. 1972. Dynamics of Fluids in Porous Media. New York: Elsevier Science
[20]  Kandhai D, Vidal D, Hoekstra A G, et al. 1998. A comparison between lattice-boltzmann and finite-element simulations of fluid flow in static mixer reactors. Int J Mod Phys C, 9: 1123-1128
[21]  Kandhai D, Vidal D, Hoekstra A G, et al. 1999. Lattice-boltzmann and finite element simulations of fluid flow in a smrx static mixer reactor. Int J Numer Methods Fluids, 31: 1019-1033
[22]  Karacan C O, Okandan E. 2001. Adsorption and gas transport in coal microstructure: Investigation and evaluation by quantitative x-ray ct imaging. Fuel, 80: 509-520
[23]  Kaviany M. 1995. Principles of heat transfer in porous media. Berlin: Springer
[24]  Keehm Y. 2003. Computational rock physics: Transport properties in porous media and applications. Doctoral Dissertation. Stanford: Stanford University
[25]  Koponen A, Kataja M, Timonen J. 1997. Permeability and effective porosity of porous media. Phys Rev E, 56: 3319-3325
[26]  Ladd A J C. 1994a. Numerical simulations of particulate suspensions via a discretized boltzmann equation. Part 2: Numerical results. J Fluid Mech, 271: 311-339
[27]  Ladd A J C. 1994b. Numerical simulations of particulate suspensions via a discretized boltzmann equation. Part 1: Theoretical foundation. J Fluid Mech, 271: 285-309
[28]  Tarafdar S, Franz A, Schulzky C, et al. 2001. Modelling porous structures by repeated sierpinski carpets. Physica A, 292: 1-8
[29]  Tuncer E, Gubanski S M, Nettelblad B. 2001. Dielectric relaxation in dielectric mixtures: Application of the finite element method and its comparison with dielectric mixture formulas. J Appl Phys, 89: 8092-8100
[30]  Vita M C, De Bartolo S, Fallico C, et al. 2012. Usage of infinitesimals in the menger''s sponge model of porosity. Appl Math Comput, 218: 8187-8195
[31]  Xu H, Sang S, Fang L, et al. 2011. Production characteristics and the control factors of surface wells for relieved methane drainage in the Huainan mining area. Acta Geol Sin, 85: 932-941
[32]  Yao Y, Liu D, Tang D, et al. 2008. Fractal characterization of adsorption-pores of coals from north china: An investigation on CH4 ad-sorption capacity of coals. Int J Coal Geol, 73: 27-42
[33]  Yao Y, Liu D, Tang D, et al. 2009. Fractal characterization of seepage-pores of coals from china: An investigation on permeability of coals. Comput Geosci, 35: 1159-1166
[34]  Yu B, Li J. 2001. Some fractal characters of porous media. Fractals, 9: 365-372
[35]  Yuan L Y, Tao R. 1986. Experimental study of the conductivity exponent for some sierpinski carpets. Mod Phys Lett A, 116: 284-286
[36]  秦勇, 徐志伟. 1995. 高煤级煤孔经结构的自然分类及其应用. 煤炭学报, 20: 266-271
[37]  滕桂荣, 谭云亮, 高明. 2007. 基于lattice Boltzmann方法对裂隙煤体中瓦斯运移规律的模拟研究. 岩石力学与工程学报, 26(增刊 1): 3503-3508
[38]  滕桂荣, 谭云亮, 高明, 等. 2008. 基于lbm方法的裂隙煤体内瓦斯抽放的模拟分析. 煤炭学报, 33: 914-919
[39]  王文峰, 徐磊, 傅雪海. 2002. 应用分形理论研究煤孔隙结构. 中国煤田地质, 14: 26-27
[40]  邢玉飞. 2009. 基于lbm地下煤层瓦斯运移仿真实现. 硕士学位论文. 西安: 西安建筑科技大学
[41]  姚艳斌, 刘大锰. 2007. 华北重点矿区煤储层吸附特征及其影响因素. 中国矿业大学学报, 36: 308-314
[42]  张松航, 汤达祯, 唐书恒, 等. 2008. 鄂尔多斯盆地东缘煤储层微孔隙结构特征及其影响因素. 地质学报, 82: 1341-1349
[43]  张松航, 唐书恒, 汤达祯, 等. 2009. 鄂尔多斯盆地东缘煤储层渗流孔隙分形特征. 中国矿业大学学报, 38: 713-718
[44]  朱益华, 陶果, 方伟, 等. 2007. 低渗气藏中气体渗流klinkenberg效应研究进展. 地球物理学进展, 22: 1591-1596
[45]  Adler P M, Thovert J F. 1993. Fractal porous media. Transp Porous Media, 13: 41-78
[46]  Cai J, Huai X. 2010. Study on fluid-solid coupling heat transfer in fractal porous medium by lattice boltzmann method. Appl Therm Eng, 30: 715-723
[47]  Cai Y, Liu D, Yao Y, et al. 2011. Fractal characteristics of coal pores based on classic geometry and thermodynamics models. Acta Geol Sin-Engl Ed, 85: 1150-1162
[48]  Chen S, Doolen G D. 1998. Lattice boltzmann method for fluid flows. Annu Rev Fluid Mech, 30: 329-364
[49]  Liu J, Chen Z, Elsworth D, et al. 2011. Interactions of multiple processes during cbm extraction: A critical review. Int J Coal Geol, 87: 175-189
[50]  Liu S, Harpalani S, Pillalamarry M. 2012. Laboratory measurement and modeling of coal permeability with continued methane production: Part 2-modeling results. Fuel, 94: 117-124
[51]  Malaspinas O, Fiétier N, Deville M. 2010. Lattice boltzmann method for the simulation of viscoelastic fluid flows. J Non-Newton Fluid, 165: 1637-1653
[52]  Mavko G, Mukerji T, Dvorkin J. 1998. The rock physics handbook: Tools for seismic analysis of porous media. Cambridge: Cambridge University Press
[53]  Mitra A, Harpalani S, Liu S. 2012. Laboratory measurement and modeling of coal permeability with continued methane production: Part 1— laboratory results. Fuel, 94: 110-116
[54]  Nithiarasu P, Ravindran K. 1998. A new semi-implicit time stepping procedure for buoyancy driven flow in a fluid saturated porous medium. Comput Method Appl M, 165: 147-154
[55]  Nithiarasu P, Seetharamu K N, Sundararajan T. 1997. Natural convective heat transfer in a fluid saturated variable porosity medium. Comput Method Appl M, 40: 3955-3967
[56]  Nourgaliev R R, Dinh T N, Theofanous T G, et al. 2003. The lattice boltzmann equation method: theoretical interpretation, numerics and implications. Int J Multiphas Flow, 29: 117-169
[57]  Pan Z, Connell L D. 2012. Modelling permeability for coal reservoirs: A review of analytical models and testing data. Int J Coal Geol, 92: 1-44
[58]  Qian J, Li Q, Yu K, et al. 2004. A novel method to determine effective thermal conductivity of porous materials. Sci China Ser E-Eng Mater Sci, 47: 716-724
[59]  Qian Y H, D''Humieres D, Lallemand P. 1992. Lattice bgk models for navier-stokes equation. Europhys Lett, 17: 479-488
[60]  Sangani A S, Acrivos A. 1982. Slow flow past periodic arrays of cylinders with application to heat transfer. Int J Multiphas Flow, 8: 193-206
[61]  Succi S. 2001. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford: Clarendon Press

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133