全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

可居住行星HD40307g的大气压和二氧化碳含量

, PP. 2099-2102

Keywords: 系外行星大气,系外行星气候,系外生命,宜居带,宜居行星

Full-Text   Cite this paper   Add to My Lib

Abstract:

?HD40307g是人们发现的距地球最近的可居住行星,其主星类型为K2V,类似于太阳.如果其存在获得确认,将是未来人类探测系外生命计划的主要目标之一.尽管通过HD40307g收到的恒星辐射知道其大气应该比地球大气浓厚,但具体多浓厚尚不得而知,更多关于HD40307g大气的信息对探测HD40307g上可能存在的生命是有用的.利用一维辐射-对流模式研究HD40307g的大气压和二氧化碳含量对其表面温度的影响,发现下列大气压和二氧化碳含量的组合可以使HD40307g的全球平均表面温度与今天地球一样(288K):(1)10-bar+3%CO2;(2)5-bar+10%CO2;(3)3-bar+30%CO2.

References

[1]  Toon O B, McKay C P, Ackerman T P, et al. 1989. Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J Geophys Res, 94: 16287-16301
[2]  Tuomi M, Anglada-Escude G, Gerlach E, et al. 2013. Habitable-zone super-Earth candidate in a six-planet system around the K2.5V star HD 40307. Astron Astrophs, 549: A48-71
[3]  von Paris P, Gebauer S, Godolt M, et al. 2010. The extrasolar planet Gliese 581d: A potentially habitable planet? Astron Astrophs, 522: A23-33
[4]  Wood B E, Mueller H R, Zank G P, et al. 2005. New mass-loss measurements from astrospheric Ly alpha absorption. Astrophs J, 628: L143-L146
[5]  Wordsworth R D, Forget F, Selsis F, et al. 2010. Is Gliese 581d habitable? Some constraints from radiative-convective climate modeling. Astron Astrophs, 522: A22-29
[6]  Wordsworth R D, Pierrehumbert R. 2013. Hydrogen-nitrogen Greenhouse warming in Earth''s early atmosphere. Science, 339: 64-67
[7]  胡永云. 2012. 太阳系外行星大气与气候. 大气科学, 37: 451-466
[8]  Borucki W J, Agol E, Fressin F. 2013. Kepler-62: A Five-planet System with planets of 1.4 and 1.6 Earth Radii in the Habitable Zone. Science, 340: 587-590
[9]  Gilliland R L. 1989. Solar evolution. Glob Planet Change, 1: 35-55
[10]  Goldblatt C, Claire M W, Lenton T M, et al. 2009. Nitrogen-enhanced greenhouse warming on early Earth. Nat Geosci, 2: 891-896
[11]  Gough D O. 1981. Solar interior structure and luminosity variations. Solar Phys, 74: 21-34
[12]  Haqq-Misra J, Domagal-Holdman S D, Kasting P J, et al. 2008. A revised, hazy methane greenhouse for the Archean Earth. Astrobiology, 8: 1127-1137
[13]  Harrison J F, Kaiser A, VandenBrooks J M, 2010. Atmospheric oxygen level and the evolution of insect body size. Proc R Soc B, 277: 1937-1946
[14]  Hu Y, Ding F. 2011. Radiative constraints on the habitability of exoplanets Gliese 581c and Gliese 581d. Astron Astrophs, 526: A135-142
[15]  Kasting J F, Pollack J B, Crisp D. 1984. Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early Earth. J Atmos Chem, 1: 403-428
[16]  Kasting J F, Toon O B, Pollack J B. 1988. How climate evolved on the terrestrial planets. Sci Am, 256: 90-97
[17]  Manabe S, Wetherald R T. 1967. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J Atmos Sci, 24: 241-259
[18]  Mischna M A, Kasting J F, Pavlov A A, et al. 2000. Influence of carbon dioxide clouds on early martian climate. Icarus, 145: 546-554
[19]  Pierrehumbert R. 2011. A palette of climates for Gliese 581g. Astrophs J, 726: L8-12
[20]  Pierrehumbert R, Gaidos E. 2011. Hydrogen greenhouse planets beyond the habitable zone. Astrophs J, 734: L13-17
[21]  Rosing M T, Bird D K, Sleep N H, et al. 2010. No climatic paradox under the faint early Sun. Nature, 464: 744-747
[22]  Som S, Catling D C, Harnmeijer J P, et al. 2012. Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints. Nature, 484: 359-362
[23]  Tian F, Claire M W, Haqq-Misra J D, et al. 2010. Photochemical and climate consequences of sulfur outgassing on early Mars. EPSL, 295: 412-418

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133