Toon O B, McKay C P, Ackerman T P, et al. 1989. Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J Geophys Res, 94: 16287-16301
[2]
Tuomi M, Anglada-Escude G, Gerlach E, et al. 2013. Habitable-zone super-Earth candidate in a six-planet system around the K2.5V star HD 40307. Astron Astrophs, 549: A48-71
[3]
von Paris P, Gebauer S, Godolt M, et al. 2010. The extrasolar planet Gliese 581d: A potentially habitable planet? Astron Astrophs, 522: A23-33
[4]
Wood B E, Mueller H R, Zank G P, et al. 2005. New mass-loss measurements from astrospheric Ly alpha absorption. Astrophs J, 628: L143-L146
[5]
Wordsworth R D, Forget F, Selsis F, et al. 2010. Is Gliese 581d habitable? Some constraints from radiative-convective climate modeling. Astron Astrophs, 522: A22-29
[6]
Wordsworth R D, Pierrehumbert R. 2013. Hydrogen-nitrogen Greenhouse warming in Earth''s early atmosphere. Science, 339: 64-67
[7]
胡永云. 2012. 太阳系外行星大气与气候. 大气科学, 37: 451-466
[8]
Borucki W J, Agol E, Fressin F. 2013. Kepler-62: A Five-planet System with planets of 1.4 and 1.6 Earth Radii in the Habitable Zone. Science, 340: 587-590
[9]
Gilliland R L. 1989. Solar evolution. Glob Planet Change, 1: 35-55
[10]
Goldblatt C, Claire M W, Lenton T M, et al. 2009. Nitrogen-enhanced greenhouse warming on early Earth. Nat Geosci, 2: 891-896
[11]
Gough D O. 1981. Solar interior structure and luminosity variations. Solar Phys, 74: 21-34
[12]
Haqq-Misra J, Domagal-Holdman S D, Kasting P J, et al. 2008. A revised, hazy methane greenhouse for the Archean Earth. Astrobiology, 8: 1127-1137
[13]
Harrison J F, Kaiser A, VandenBrooks J M, 2010. Atmospheric oxygen level and the evolution of insect body size. Proc R Soc B, 277: 1937-1946
[14]
Hu Y, Ding F. 2011. Radiative constraints on the habitability of exoplanets Gliese 581c and Gliese 581d. Astron Astrophs, 526: A135-142
[15]
Kasting J F, Pollack J B, Crisp D. 1984. Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early Earth. J Atmos Chem, 1: 403-428
[16]
Kasting J F, Toon O B, Pollack J B. 1988. How climate evolved on the terrestrial planets. Sci Am, 256: 90-97
[17]
Manabe S, Wetherald R T. 1967. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J Atmos Sci, 24: 241-259
[18]
Mischna M A, Kasting J F, Pavlov A A, et al. 2000. Influence of carbon dioxide clouds on early martian climate. Icarus, 145: 546-554
[19]
Pierrehumbert R. 2011. A palette of climates for Gliese 581g. Astrophs J, 726: L8-12
[20]
Pierrehumbert R, Gaidos E. 2011. Hydrogen greenhouse planets beyond the habitable zone. Astrophs J, 734: L13-17
[21]
Rosing M T, Bird D K, Sleep N H, et al. 2010. No climatic paradox under the faint early Sun. Nature, 464: 744-747
[22]
Som S, Catling D C, Harnmeijer J P, et al. 2012. Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints. Nature, 484: 359-362
[23]
Tian F, Claire M W, Haqq-Misra J D, et al. 2010. Photochemical and climate consequences of sulfur outgassing on early Mars. EPSL, 295: 412-418