全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于PPDF方法的气溶胶散射效应参数化模型精度评估

, PP. 2062-2071

Keywords: PPDF,O2-A带,气溶胶,反演

Full-Text   Cite this paper   Add to My Lib

Abstract:

?本文讨论分析了O2-A带气溶胶散射效应的估算.利用基于等效理论的光子路径分布概率函数(PPDF)方法,将散射效应对大气有效透过率的影响参数化,通过模拟反演实验分析研究PPDF方法的有效性.首先利用正向模型模拟四种不同气溶胶模式分布情况下O2-A带的卫星观测;然后利用非线性最优化迭代方法反演PPDF因子,利用反演得到的PPDF因子重构观测值,最后比对分析了重构观测值和模拟观测真值之间的差异.通过反演实验,验证了PPDF方法对于气溶胶散射效应估算的有效性;同时也表明O2-A带可以作为痕量气体卫星遥感的一个有效辅助观测通道.

References

[1]  Aben I, Hasekamp O, Hartmann W. 2007. Uncertainties in the space-based measurements of CO2 columns due to scattering in the Earth''s atmosphere. J Quant Spectrosc Rad Trans, 104: 450-459
[2]  Bennartz R, Preusker R. 2006. Representation of the photon pathlength distribution in a cloudy atmosphere using finite elements. J Quant Spectrosc Rad Trans, 98: 202-219
[3]  Bril A, Oshchepkov S, Yokota T, et al. 2007. Parameterization of aerosol and cirrus cloud effect on reflected sunlight spectra measured from space: Application of the equivalence theorem. Appl Optics, 46: 2460-2470
[4]  Bril A, Oshchepkov S, Yokota T. 2008. Correction of atmospheric scattering effects in space-based observations of carbon dioxide: Model study of desert dust aerosol. J Quant Spectrosc Rad Trans, 109: 1815-1827
[5]  Buchwitz M, Burrows J P. 2004. Retrieval of CH4, CO and CO2 total column amounts from SCIAMACHY near-infrared nadir spectral: Retrieval algorithm and first results. Proc SPIE, 5235: 375-388
[6]  Connor B J, Boesch H, Toon G, et al. 2008. Orbiting carbon observatory: Inverse method and prospective error analysis. J Geophys Res, 113: D05305
[7]  Crisp D, Allas R M, Breon F M, et al. 2004. The orbiting carbon observatory (OCO) mission. Adv Space Res, 34: 700-709
[8]  Houweling S, Hartmann W, Aben I, et al. 2005. Evidence of systematic errors in SCIAMACHY-observed CO2 due to aerosols. Atmos Chem Phys, 5: 3003-3313
[9]  IPCC. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York: Cambridge University Press
[10]  Luo Y F, Lu D R, Zhou X J, et al. 2001. Characteristics of the spatial distribution and yearly variation of aerosol optical depth over China in last 30 years. J Geophys Res, 106: 14501-14513
[11]  Miller C E, Crisp D, DeCola P L, et al. 2007. Precision requirements for space-based XCO2 data. J Geophys Res, 112: D10134
[12]  OshchepkovS, Bril A, Yokota T. 2008. PPDF-based method to account for atmospheric light scattering in observations of carbon dioxide from space. J Geophys Res, 113: D23210
[13]  Oshchepkov S, Bril A, Yokota T. 2009. An improved photon path length probability density function-based radiative transfer model for space-based observation of greenhouse gases. J Geophys Res, 114: D19207
[14]  Rodgers C D. 2000. Inverse methods for atmospheric sounding: Theory and Practice. London: World Scientific Publishing Co, 85
[15]  Rozanov A, Rozanov V, Buchwitz M, et al. 2005. SCIATRAN 2.0—A new radiative transfer model for geophysical applications. Adv Space Res, 5: 1015-1019
[16]  Schneising O, Buchwitz M, Burrows J P, et al. 2008. Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite—Part 1: Carbon dioxide. AtmosChemPhys, 8: 3827-3853
[17]  Yokota T, Oguma H, Morino I, et al. 2004. Test measurements by a BBM of the nadir-looking SWIR FTS aboard GOSAT to monitor CO2 column density from space. Proc SPIE, 5652: 182-188

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133