全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

天山中新世早期快速剥露:磷灰石裂变径迹与(U-Th)/He低温热年代学证据

, PP. 1964-1974

Keywords: 裂变径迹,(U-Th)/He,剥露,新生代,天山

Full-Text   Cite this paper   Add to My Lib

Abstract:

?天山造山带新生代剥露过程与构造演化历史一直是国内外地学界关注的热点.本文联合运用磷灰石裂变径迹(AFT)和(U-Th)/He(AHe)低温热年代学技术,重建了新疆天山巴仑台剖面基岩山体的热演化历史,分析了剥露速率的变化特征,结合前人研究成果进一步探讨了新生代天山地区剥露作用过程的基本特点.结果表明,巴仑台剖面磷灰石样品的裂变径迹年龄集中在40~60Ma,(U-Th)/He年龄为10~40Ma;裂变径迹时间-温度史模拟结果表明巴仑台地区中新世早期以来剥露作用明显增速,剥露速率由之前的<30mMa-1增大为>100mMa-1;基于AFT与AHe年龄,利用年龄-封闭温度法以及矿物对法计算得到的剥露速率也表明该地区新生代剥露作用自中新世早期开始加速,并且在晚中新世剥露作用进一步增强.本文所揭示的快速剥露过程也存在于天山造山带其他地区.从整个天山造山带来看,开始于中新世早期的快速剥露是新生代天山地区一次重要的剥露作用过程.

References

[1]  杨树锋, 陈汉林, 程晓敢, 等. 2003. 南天山新生代隆升和去顶作用过程. 南京大学学报(自然科学版), 39: 1-8
[2]  张良臣, 吴乃元. 1985. 天山地质构造及演化历史. 新疆地质, 3: 1-13
[3]  张培震, 邓起东, 杨晓平, 等. 1996. 天山的晚新生代构造变形及其地球动力学问题. 中国地震, 12: 127-140
[4]  张志诚, 郭召杰, 吴朝东, 等. 2007. 天山北缘侏罗系地层热历史演化及其地质意义: 磷灰石裂变径迹和镜质体反射率证据. 岩石学报, 23: 1683-1695
[5]  周祖翼, 许长海, Reiners P W, 等. 2003. 大别山天堂寨地区晚白垩世以来剥露历史的U-Th/He和裂变径迹分析证据. 科学通报, 48: 598-602
[6]  朱文斌, 舒良树, 万景林, 等. 2006. 新疆博格达-哈尔里克山白垩纪以来剥露历史的裂变径迹证据. 地质学报, 80: 16-22
[7]  Allen M B, Windley B F, Zhang C, et al. 1991. Basin evolution within and adjacent to the Tien Shan Range, NW China. J Geol Soc, 148: 369-378
[8]  Avouac J P, Tapponnier P, Bai M, et al. 1993. Active thrusting and folding along the northern Tien Shan and late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan. J Geophys Res, 98: 6755-6804
[9]  Bullen M E, Burbank D W, Garver J, et al. 2001. Late Cenozoic tectonic evolution of the northwestern Tien Shan: New age estimates for the initiation of mountain building. Geol Soc Am Bull, 113: 1544-1559
[10]  Bullen M E, Burbank D W, Garver J. 2003. Building the northern Tien Shan: Integrated thermal, structural, and topographic constraints. J Geology, 111: 149-165
[11]  Burbank D W, Brewer I D, Sobel E R, et al. 2007. Single-crystal dating and the detrital record of orogenesis. In: Nichols G, Williams E, Paola C, eds. Sedimentary Processes, Environments and Basin: A Tribute to Peter Friend. Spec Publ Int Ass Sediment, 38: 253-281
[12]  Carlson W D, Donelick R A, Ketcham R A. 1999. Variability of apatite fission-track annealing kinetics I: Experimental results. Am Miner, 84: 1213-1223
[13]  de Corte F, Bellemans F, van den Haute P, et al. 1998. A new U doped glass certified by the European commission for the calibration of fission-track dating. In: van den Haute P, de Corte F, eds. Advances in Fission-track Geochronology. Dordrecht: Kluwer Academic Publishers. 67-78
[14]  Donelick R A, Miller D S. 1991. Enhanced tint fission track densities in low spontaneous track density apatites using 252Cf-derived fission fragment tracks: A model and experimental observations. Nucl Tracks Radiat Meas, 18: 301-307
[15]  Donelick R A. 1993. Method of fission track analysis utilizing bulk chemical etching of apatite. United States Patent, Number 5, 267, 274. 1993-11-30
[16]  Donelick R A, Ketcham R A, Carlson W D. 1999. Variability of apatite fission track annealing kinetics Ⅱ: Crystallographic orientation effects. Am Miner, 84: 1224-1234
[17]  Dumitru T A, Zhou D, Chang E Z, et al. 2001. Uplift, exhumation, and deformation in the Chinese Tian Shan. In: Hendrix M S, Davis G A, eds. Paleozoic and Mesozoic Tectonic Evolution of Central and Eastern Asia: From Continental Assembly to Intracontinental Deformation. Geol Soc Am Memoir, 194: 71-99
[18]  Farley K A. 2000. Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite. J Geophys Res, 105: 2903-2914
[19]  Farley K A. 2002. (U-Th)/He dating: Techniques, calibrations, and applications. Rev Mineral Geochem, 47: 819-844
[20]  常远, 周祖翼. 2010. 利用低温热年代学数据计算剥露速率的基本方法. 科技导报, 28: 86-94
[21]  常远, 王玮, 周祖翼. 2010. 采样地形对年龄-高程法应用的限制. 地球物理学报, 53: 1868-1874
[22]  陈正乐, 万景林, 刘健, 等. 2006. 西天山山脉多期次隆升-剥露的裂变径迹证据. 地球学报, 27: 97-106
[23]  陈正乐, 李丽, 刘健, 等. 2008. 西天山隆升-剥露过程初步研究. 岩石学报, 24: 625-636
[24]  邓起东, 冯先岳, 张培震, 等. 2000. 天山活动构造. 北京: 地震出版社
[25]  丁汝鑫, 周祖翼, 王玮. 2007. 利用低温热年代学数据计算造山带剥露速率. 地球科学进展, 22: 447-455
[26]  杜治利, 王清晨. 2007. 中新生代天山地区隆升历史的裂变径迹证据. 地质学报, 81: 1081-1101
[27]  杜治利, 王清晨, 周学慧. 2007. 中新生代库车-南天山盆山系统隆升历史的裂变径迹证据. 岩石矿物学杂志, 26: 399-408
[28]  高俊, 钱青, 龙灵利, 等. 2009. 西天山的增生造山过程. 地质通报, 28: 1804-1816
[29]  郭召杰, 吴朝东, 张志诚, 等. 2005. 乌鲁木齐后峡地区侏罗系沉积特征、剥露过程及中新生代盆山关系讨论. 高校地质学报, 11: 558-567
[30]  郭召杰, 张志诚, 吴朝东, 等. 2006. 中、新生代天山隆升过程及其与准噶尔、阿尔泰山比较研究. 地质学报, 80: 1-15
[31]  李锦轶, 王克卓, 李亚萍, 等. 2006. 天山山脉地貌特征、地壳组成与地质演化. 地质通报, 25: 895-909
[32]  李丽, 陈正乐, 祁万修, 等. 2008. 准噶尔盆地周缘山脉抬升-剥露过程的FT证据. 岩石学报, 24: 1011-1020
[33]  马前, 舒良树, 朱文斌. 2006. 天山乌-库公路剖面中、新生代埋藏、隆升及剥露史研究. 新疆地质, 24: 99-104
[34]  沈传波, 梅廉夫, 刘麟, 等. 2006. 新疆博格达山中新生代隆升-热历史的裂变径迹记录. 海洋地质与第四纪地质, 26: 87-92
[35]  沈传波, 梅廉夫, 张士万, 等. 2008. 依连哈比尔尕山和博格达山中新生代隆升的时空分异: 裂变径迹热年代学的证据. 矿物岩石, 28: 63-70
[36]  汪新伟, 汪新文, 马永生. 2007. 新疆博格达山晚中生代以来的差异剥露史. 地质学报, 81: 1507-1517
[37]  许长海, 周祖翼, van den Haute P, 等. 2004. 大别造山带磷灰石裂变径迹(AFT)年代学研究. 中国科学D辑: 地球科学, 34: 622-634
[38]  Fu B H, Ninomiya Y, Guo J M. 2010. Slip partitioning in the northeast Pamir-Tian Shan convergence zone. Tectonophysics, 483: 344-364
[39]  Gleadow A J W, Duddy I R, Green P F, et al. 1986. Confined fission track lengths in apatite: A diagnostic tool for thermal history analysis. Contrib Mineral Petrol, 94: 405-415
[40]  Green P F, Duddy I R, Gleadow A J W, et al. 1985. Fission track annealing in apatite: Track length measurements and the form of the Arrhenius plot. Nucl Tracks Radiat Meas, 10: 323-328
[41]  Hendrix M S, Graham S A, Carroll A R, et al. 1992. Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: Evidence from Mesozoic strata of the north Tarim, south Junggar, and Turpan basins, northwest China. Geol Soc Am Bull, 104: 53-79
[42]  Hendrix M S, Dumitru T A, Graham S A. 1994. Late Oligocene-early Miocene unroofing in the Chinese Tian shan: An early effect of the India-Asia collision. Geology, 22: 487-490
[43]  House M A, Wernicke B P, Farley K A. 1998. Dating topography of the Sierra Nevada, California, using apatite (U-Th)/He ages. Nature, 396: 66-69
[44]  Hurford A J, Green P F. 1983. The Zeta age calibration of fission-track dating. Chem Geol (Isotope Geosci Sect), 41: 285-317
[45]  Hurford A J, Hammerschmidt K. 1985. 40Ar/39Ar and K-Ar dating of the Bishop and Fish Canyon Tuffs: Calibration ages for fission-track dating standards. Chem Geol (Isotope Geosci Sect), 58: 23-32
[46]  Ketcham R A, Donelick R A, Carlson W D. 1999. Variability of apatite fission track annealing Kinetics Ⅲ: Extrapolation to geological time scales. Am Mineral, 84: 1235-1255
[47]  Ketcham R A, Carter A, Donelick R A, et al. 2007. Improved modeling of fission-track annealing in apatite. Am Miner, 92: 789-798
[48]  Ketcham R A. 2009. HeFTy Version 1.6.7. Austin: University of Texas
[49]  Métivier F, Gaudemer Y. 1997. Mass transfer between eastern Tien Shan and adjacent basins (central Asia): Constraints on regional tectonics. Geophys J Int, 128: 1-17
[50]  Najman Y, Pringle M, Godin L, et al. 2001. Dating of the oldest continental sediments from the Himalayan foreland basin. Nature, 410: 194-197
[51]  Reiners W P, Zhou Z Y, Ehlers T A, et al. 2003. Post-orogenic evolution of the Dabie Shan, Eastern China, from (U-Th)/He and fission-track thermochronology. Am J Sci, 303: 489-518
[52]  Reiners W P, Brandon M T. 2006. Using thermochronology to understand orogenic erosion. Annu Rev Earth Planet Sci, 34: 419-466
[53]  Reiners P W, Nicolescu, S. 2006. Measurement of parent nuclides for (U-Th)/He chronometry by solution sector ICP-MS, ARHDL Report 1. University of Arizona
[54]  Reiners P W. 2007. Thermochronologic Approaches to Paleotopography. Rev Mineral Geochem, 66: 243-267
[55]  Sobel E R, Dumitru T A. 1997. Thrusting and exhumation around the margins of the western Tarim Basin during the India-Asia collision. J Geophys Res, 102: 5043-5063
[56]  Shu L S, Wang B, Yang F, et al. 2003. Polyphase tectonic events and Mesozoic-Cenozoic basin-range coupling in the Chinese Tianshan belt. Acta Geol Sin, 77: 457-467
[57]  Shuster D W, Ehlers T A, Rusmore M E, et al. 2005. Rapid glacial erosion at 1.8 Ma revealed by 4He/3He thermochronometry. Science, 310: 1668-1670
[58]  Vermeesch P, Seward D, Latkoczy C, et al. 2007. alpha-Emitting mineral inclusions in apatite, their effect on (U-Th)/He ages, and how to reduce it. Geochim Cosmochim Acta, 71: 1737-1746
[59]  Wang W, Zhou Z Y. 2009. Reconstruction of palaeotopography from low-temperature thermochronological data. In: Lisker F, Ventura B, Glasmacher U A, eds. Thermochronological Methods: From Palaeotemperature Constraints to Landscape Evolution Models. Geol Soc Spec Publ, 324: 99-110
[60]  Windley B F, Allen M B, Zhang C, et al. 1990. Paleozoic accretion and Cenozoic deformation of the Chinese Tien Shan Range, central Asia. Geology, 18: 128-131
[61]  Yin A, Nie S, Craig P, et al. 1998. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan. Tectonics, 17: 1-27
[62]  Zhang Z, Zhu W, Shu L, et al. 2009. Apatite fission track thermochronology of the Precambrian Aksu blueschist, NW China: Implications for thermo-tectonic evolution of the north Tarim basement. Gondwana Res, 16: 182-188

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133