全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

晚新生代东亚气候变化:进展与问题

, PP. 1907-1918

Keywords: 东亚气候,青藏高原,大气CO2,晚新生代

Full-Text   Cite this paper   Add to My Lib

Abstract:

?晚新生代东亚季风和干旱气候的形成和演化及其与青藏高原生长、全球气候变化的关系一直受到关注,但存在着不同看法.本文分析了近年来国内外在晚新生代东亚气候研究方面的新结果,讨论了亚洲季风和干旱气候阶段性和周期性演化的特征,在此基础上,分析了东亚气候变化与全球冰量/温度变化、高原隆升等的联系.我们的研究认为,青藏高原隆升驱动不能全面合理地解释晚新生代以来东亚气候演化过程,全球冰量和北半球温度变化在驱动东亚气候阶段性变化方面具有显著作用.此外,晚新生代大气CO2浓度变化对东亚气候大尺度演化的影响值得进一步重视,它可能是通过影响全球温度的波动和高纬/低纬的温度梯度,进而驱动热带辐合带(ITCZ)和季风气候带摆动,来影响东亚季风和干旱气候的演化的.在未来研究中,需要格外重视地质记录与数值模拟的结合.其中,古气候变化的高精度定量记录、区域异同及高原不同区域差别隆升的环境效应可能是突破点之一.

References

[1]  陈明扬. 1991. 中国风尘堆积与全球干旱化. 第四纪研究, (4): 361-371
[2]  戴霜, 方小敏, 宋春晖, 等. 2005. 青藏高原北部的早期隆升. 科学通报, 50: 673-683
[3]  邓涛, 王世骐, 颉光普, 等. 2011. 藏北伦坡拉盆地丁青组哺乳动物化石对时代和古高度的指示. 科学通报, 56: 2873-2880
[4]  方小敏, 赵志军, 李吉均, 等. 2004. 祁连山北缘老君庙背斜晚新生代磁性地层与高原北部隆升. 中国科学D 辑: 地球科学, 34: 97-106
[5]  傅开道, 高军平, 方小敏, 等. 2001. 祁连山区中西段沉积物粒径和青藏高原隆升关系模型. 中国科学D 辑: 地球科学, 31(增刊): 169-174
[6]  郭正堂. 2010. 22~8 Ma风尘沉积记录的季风演变历史. 见: 丁仲礼, 等编著. 中国西部环境演化集成研究. 北京: 气象出版社. 1-19
[7]  李吉均, 文世宣, 张青松, 等. 1979. 青藏高原隆起的时代、幅度和形式的探讨. 中国科学, 22: 608-616
[8]  李吉均, 方小敏. 1998. 青藏高原隆起与环境变化研究. 科学通报, 43: 1569-1574
[9]  李吉均. 1999. 青藏高原的地貌演化与亚洲季风. 海洋地质与第四纪地质, 19: 1-7
[10]  李孝泽, 董光荣. 2006. 中国西北部干旱环境的形成时代与成因探讨. 第四纪研究, 26: 895-904
[11]  Ding Z L, Liu T S, Rutter N W, et al. 1995. Ice-volume forcing of East Asian winter monsoon variations in the past 800000 years. Quat Res, 44: 149-159
[12]  Ding Z L, Sun J M, Liu T S, et al. 1998. Wind-blown origin of the Pliocene red clay formation in the central Loess Plateau, China. Earth Planet Sci Lett, 161: 135-143
[13]  Duce R A, Unni C K, Ray B J, et al. 1980. Long-range atmospheric transport of soil dust from Asia to the tropical North Pacific—Temporal variability. Science, 209: 1522-1524
[14]  Dupont-Nivet G, Dai S, Fang X, et al. 2008. Timing and distribution of tectonic rotations in the northeastern Tibetan Plateau. In: Burchfield B C, Wang E, eds. Investigations into the Tectonics of the Tibetan Plateau. Geol Soc Am Special Paper, 444: 73-87
[15]  Duvall A R, Clark M K, van der Pluijm B A, et al. 2011. Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry. Earth Planet Sci Lett, 304: 520-526
[16]  Fortelius M, Jernvall J, Liu L P, et al. 2002. Fossil mammals resolve regional patterns of Eurasian climate change during 20 million years. Evo Eco Res, 4: 1005-1016
[17]  Garzione C N, Quade J, Decelles P G, et al. 2000. Predicting paleoelevation of Tibet and the Himalaya from δ18O vs. altitude gradients in meteoric water across the Nepal Himalaya. Earth Planet Sci Lett, 183: 215-229
[18]  Li G J, Pettke T, Chen J. 2011. Increasing Nd isotopic ratio of Asian dust indicates progressive uplift of the north Tibetan Plateau since the middle Miocene. Geology, 39: 199-202
[19]  Li G J, Elderfield H. 2013. Evolution of carbon cycle over the past 100 million years. Geochim Cosmochim Acta, doi: 10.1016/j.gca.2012.10.014
[20]  Li J J, Feng Z D, Tang L Y. 1988. Late Quaternary monsoon patterns on the Loess Plateau of China. Earth Sur Processes Landf, 13: 125-135
[21]  Liu L, Eronen J T, Fortelius M. 2009. Significant mid-latitude aridity in the middle Miocene of East Asia. Paleogeogr Palaeoclimatol Palaeoecol, 279: 201-206
[22]  Liu T S. 1985. Loess and Environment. Beijing: China Ocean Press. 31-67
[23]  Liu T S, Ding Z L. 1993. Stepwise coupling of monsoon circulations to global ice volume variations during the late Cenozoic. Glob Planet Change, 7: 119-130
[24]  Liu T S, Ding Z L. 1998. Chinese loess and the palaeomonsoon. Annu Rev Earth Planet Sci, 26: 111-145
[25]  Liu X D, Yin Z Y. 2002. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Paleogeogr Paleoclimatol Palaeoecol, 183: 223-245
[26]  Lu H J, Xiong S F. 2009. Magnetostratigraphy of the Dahonggou section, northern Qaidam Basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altyn Tagh Fault. Earth Planet Sci Lett, 288: 539-550
[27]  Lu H Y, Vandenberghe J F, An Z S. 2001. Aeolian origin and palaeoclimatic implications of the ‘Red Clay’ (North China) as evidenced by grain-size distribution. J Quat Sci, 16: 89-97
[28]  Lu H Y, Zhang F Q, Liu X D, et al. 2004. Periodicities of palaeoclimatic variations recorded by loess-palaeosol sequences in China. Quat Sci Rev, 23: 1891-1900
[29]  Lu H Y, Wang X Y, Li L P. 2010. Aeolian sediment evidence that global cooling has driven late Cenozoic stepwise aridification in central Asia. In: Clift P D, Tada R, Zheng H, eds. Monsoon Evolution and Tectonics-climate Linkage in Asia. Geol Soc London Spec Publ, 342: 29-44
[30]  Lu H Y, Yi S W, Liu Z Y, et al. 2013. Variation of East Asian monsoon precipitation during the past 21 k.y. and potential CO2 forcing. Geology, 41: 1023-1026
[31]  Manabe S, Terpstra T B. 1974. The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. J Atmos Sci, 31: 3-42
[32]  Miao Y F, Herrmann M, Wu F L, et al. 2012. What controlled Mid-Late Miocene long-term aridification in Central Asia?—Global cooling or Tibetan Plateau uplift: A review. Earth-Sci Rev, 112: 155-172
[33]  Miller K G, Fairbanks R G, Mountain G S. 1987. Tertiary oxygen isotope synthesis,sea-level history, and continental margin erosion. Paleoceanography, 2: 1-19
[34]  Métivier F, Gaudemer Y, Tapponnier P, et al. 1998. Northeastward growth of the Tibet Plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor basins, China. Tectonics, 17: 823-842
[35]  Molnar P. 2005. Mil-Pliocene growth of the Tibetan Plateau and evolution of East Asian climate. Palaeontol Electron, 8: 1-23
[36]  Molnar P, Stock J M. 2009. Slowing of India''s convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics, 28: TC3001, doi: 10.1029/2008TC002271
[37]  Molnar P, Boos W R, Battisti D S. Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau. Annu Rev Earth Planet Sci, 2010, 38: 77-102
[38]  Parrenin F, Masson-Delmotte V, K?hler P, et al. 2013. Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science, 339: 1060-1063
[39]  Qiang X K, Li Z X, Powell C M, et al. 2001. Magnetostrratigraphic record of the late Miocene, onset of the East Asian monsoon, and Pliocene uplift of northern Tibet. Earth Planet Sci Lett, 187: 83-93
[40]  Qiu J. 2013. Monsoon melee. Science, 340: 1400-1401
[41]  Ramstein G, Fluteau F, Besse J, et al. 1997. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature, 386: 788-795
[42]  Raymo M E, Ruddiman W F. 1992. Tectonic forcing of late Cenozoic climate. Nature, 359: 117-122
[43]  Rowley D B, Currie B S. 2006. Palaeo-altimetry of the late Eocene to Miocene Lunpola Basin, central Tibet. Nature, 439: 677-681
[44]  Royden L H, Burchfiel B C, van der Hilst R D. 2008. The geological evolution of the Tibetan Plateau. Science, 321: 1054-1058
[45]  Shackleton N J, Backman J, Zimmerman H, et al. 1984. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature, 307: 620-623
[46]  Shakun J D, Clark P U, He F. 2012. CO2 forcing of global climate during the last deglaciation. Nature, 484: 49-55
[47]  Sigman D M, Boyle E A. 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407: 859-869
[48]  Spicer R A, Harris N B W, Widdowson M, et al. 2003. Constant elevation of southern Tibet over the past 15 million years. Nature, 421: 622-624
[49]  Sun D H, Bloemendal J, Yi Z Y, et al. 2011. Palaeomagnetic and palaeoenvironmental study of two parallel sections of late Cenozoic strata in the central Taklimakan Desert: Implications for the desertification of the Tarim Basin. Paleogeogr Paleoclimatol Paleoecol, 300: 1-10
[50]  Sun J M, Ye J, Wu W, et al. 2010. Late Oligocece-Miocene mid-latitude aridification and wind patterns in the Asian interior. Geology, 38: 515-518
[51]  Sun J M, Jiang M S. 2013. Eocene seawater retreat from the southwest Tarim Basin and implications for early Cenozoic tectonic evolution in the Pamir Plateau. Tectonophysics, 588: 27-38
[52]  Sun X J, Wang P X. 2005. How old is the Asian monsoon system?—Palaeobotanical records from China. Paleogeogr Paleoclimatol Paleoecol, 222: 181-222
[53]  Tang Z H, Ding Z L, White P D, et al. 2011. Late Cenozoic central Asian drying inferred from a palynological record from the northern Tian Shan. Earth Planet Sci Lett, 302: 439-447
[54]  Tapponnier P, Xu Z, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294: 1671-1677
[55]  Tripati A, Roberts C, Eagle R, 2009. Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years. Science, 326: 1394-1397
[56]  Vincent E, Berger W H. 1985. Carbon dioxide and polar cooling in the Miocene-The Monterey hypothesis. In: Sundquist E T, Broecker W S, eds. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Washington DC: American Geophysical Union. 455-468
[57]  马玉贞, 李吉均, 方小敏. 临夏地区30.6~5.0 Ma红层孢粉植物群与气候演化记录. 科学通报, 1998, 43: 301-304
[58]  乔彦松, 郭正堂, 郝青振, 等. 2006. 中新世黄土-古土壤序列的粒度特征及其对成因的指示意义. 中国科学D辑: 地球科学, 36: 646-653
[59]  强小科, 安芷生, 宋友桂, 等. 2010. 晚渐新世以来中国黄土高原风成红粘土序列的发现: 亚洲内陆干旱化起源的新记录. 中国科学: 地球科学, 40: 1469-1488
[60]  施雅风, 汤懋苍, 马玉贞. 1998. 青藏高原二期隆升与亚洲季风孕育关系探讨. 中国科学D辑: 地球科学, 28: 263-271
[61]  孙东怀, 刘东生, 陈明扬, 等. 1997. 中国黄土高原红粘土序列的磁性地层与气候变化. 中国科学D辑: 地球科学, 27: 265-270
[62]  王国灿, 曹凯, 张克信, 等. 2011. 青藏高原新生代构造隆升阶段的时空格局. 中国科学 地球科学, 41: 332-349
[63]  王建力, 方小敏, 李吉均. 1999. 青藏高原东北部15 Ma以来的风沙沉积. 科学通报, 44: 1326-1331
[64]  汪品先, 赵泉鸿, 翦知湣, 等. 2003. 南海三千万年的深海记录. 科学通报, 48: 2206-2215
[65]  汪品先. 2009. 全球季风的地质演变. 科学通报, 54: 535-556
[66]  汶玲娟, 鹿化煜, 强小科. 2004. 新近纪黄土高原红黏土粒度和沉积速率的空间变化及其揭示的古大气粉尘传输动力. 中国科学D辑: 地球科学, 34: 739-747
[67]  薛祥煦, 张云翔, 岳乐平. 2006. 从哺乳动物化石看中国黄土高原红黏土-黄土系列的气候环境及演变. 中国科学D辑: 地球科学, 36: 359-369
[68]  杨怀仁, 主编. 1987. 第四纪地质. 北京: 高等教育出版社. 125-136
[69]  俞凯峰, 鹿化煜, Frank L, 等. 2013. 末次盛冰期和全新世大暖期中国北方沙地古气候定量重建探索. 第四纪研究, 2013, 33: 293-302
[70]  曾琳, 鹿化煜, 弋双文, 等. 2011. 我国东北地区黄土堆积的磁性地层年代与古气候变化. 科学通报, 56: 2267-2275
[71]  詹涛, 郭正堂, 吴海斌, 等. 2010. 华家岭山地中新世风成红土堆积与西部黄土高原地貌演化. 中国科学: 地球科学, 40: 1040-1047
[72]  张克信, 王国灿, 曹凯, 等. 2008. 青藏高原新生代主要隆升事件: 沉积响应与热年代学记录. 中国科学D辑: 地球科学, 38: 1575-1588
[73]  张克信, 王国灿, 季军良, 等. 2010. 青藏高原古近纪-新近纪地层分区与序列及其对隆升的响应. 中国科学: 地球科学, 40: 1632-1654
[74]  张利云, 丁林, 杨迪, 等. 2012. 藏北中中新世淡色花岗岩及流纹岩的成因: 对高原北部边界地壳加厚过程和隆升时代的制约. 科学通报, 57: 153-168
[75]  张林源. 1981. 青藏高原上升对我国第四纪环境演变的影响. 兰州大学学报(自然科学版), (3): 142-155
[76]  张冉, 姜大膀, 刘晓东, 等. 2012. 喜马拉雅-青藏高原不同子区域隆升对亚洲夏季气候演变影响的数值模拟. 科学通报, 57: 2403-2412
[77]  赵景波. 1989. 西安、山西保德第三纪晚期红土的研究. 沉积学报, 7: 113-120
[78]  钟大赉, 丁林. 1996. 青藏高原的隆起及其机制探讨. 中国科学D辑: 地球科学, 26: 289-295
[79]  An Z S, Liu T S, Lu Y C, et al. 1990. The long-term paleomonsoon variation recorded by the loess-paleosol sequence in Central China. Quat Int, 7/8: 91-95
[80]  An Z S. 2000. The history and variability of East Asian monsoon climate. Quat Sci Rev, 19: 171-187
[81]  An Z S, Kutzbach J E, Prell W L, et al. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since late Miocene times. Nature, 411: 62-66
[82]  Biscaye P E, Grousset F E, Revel M, et al. 1997. Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland. J Geophys Res, 102(C12): 26765-26782
[83]  Blisniuk P M, Hacker B R, Glodny J, et al. 2001. Normal faulting in central Tibet since at least 13.5 Myr ago. Nature, 412: 628-631
[84]  Boos W R, Kuang Z M. 2010. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463: 218-222
[85]  Chen J S, Huang B C, Sun L S. New constraints to the onset of the India-Asia collision: Paleomagnetic reconnaissance on the Linzizong Group in the Lhasa Block, China. Tectonophysics, 2010, 489: 189-209
[86]  Chung S, Lo C, Lee T, et al. 1998. Diachronous uplift of the Tibetan Plateau starting 40 Myr ago. Nature, 394: 769-773
[87]  Clark M K, Farley K A, Zheng D, et al. 2010. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages. Earth Planet Sci Lett, 296: 78-88
[88]  Clift P D, Blusztajn J, Nguyen D A. 2006. Large-scale drainage capture and surface uplift in Eastern Tibet before 24 Ma. Geophys Res Lett, 33: L19403, doi: 10.1029/2006GL027772
[89]  Clift P D, Hodges K V, Heslop D, et al. 2008. Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nature Geosci, 1: 875-880
[90]  Coleman M, Hodges K. 1995. Evidence for Tibetan Plateau uplift before 14 Myr ago from a new minimum age for east-west extension. Nature, 374: 49-52
[91]  Dettman D L, Fang X M, Garzione C N, et al. 2003. Uplift-driven climate change at 12 Ma: A long δ18O record from the NE margin of the Tibetan Plateau. Earth Planet Sci Lett, 214: 267-277
[92]  Ding Z L, Yu Z W, Rutter N W, et al. 1994. Towards an orbital time scale for Chinese loess deposit. Quat Sci Rev, 13: 39-70
[93]  Ge J, Guo Z, Zhan T, et al. 2012. Magnetostratigraphy of the Xihe loess-soil sequence and implication for late Neogene deformation of the West Qinling Mountains. Geophys J Int, 189: 1399-1408
[94]  Guo Z T, Liu T S, Fedoroff N, et al. 1998. Climate extremes in loess of China coupled with the strength of deep-water formation in the North Atlantic. Glob Planet Change, 18: 113-128
[95]  Guo Z T, Ruddiman W F, Hao Q Z, et al. 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416: 159-163
[96]  Guo Z T, Peng S Z, Hao Q Z, et al. 2004. Late Miocene-Pliocene development of Asian aridification as recorded in an eolian sequence in northern China. Glob Planet Change, 41: 135-145
[97]  Guo Z T, Sun B, Zhang Z S, et al. 2008. A major reorganization of Asian climate by the early Miocene. Clim Past, 4: 153-174
[98]  Guo Z T, Zhou X, Wu H B. 2012. Glacial-interglacial water cycle, global monsoon and atmospheric methane changes. Clim Dyn, doi: 10.1007/s00382-011-1147-5
[99]  Hao Q, Oldfield F, Bloemendal J, et al. 2008. Particle size separation and evidence for pedogenesis in samples from the Chinese Loess Plateau spanning the last 22 Ma. Geology, 36: 727-730
[100]  Jia G D, Peng P A, Zhao Q, et al. 2003. Changes in terrestrial ecosystem since 30 Ma in East Asia: Stable isotope evidence from black carbon in the South China Sea. Geology, 31: 1093-1096
[101]  Jiang H C, Ding Z L. 2008a. A 20 Ma pollen record of East-Asian summer monsoon evolution from Guyuan, Ningxia, China. Paleogeor Paleoclimatol Paleoecol, 265: 30-38
[102]  Jiang H C, Ji J L, Gao L, et al. 2008b. Cooling-driven climate change at 12-11 Ma: Multiproxy records from a long fluviolacustrine sequence at Guyuan, Ningxia, China. Paleogeogr Paleoclimatol Paleoecol, 265: 148-158
[103]  Jouzel J, Masson-Delmotte V, Olivier C, et al. 2007. Orbital and millennial Antarctic climate variability over the past 800000 years. Science, 317: 793-797
[104]  Kaakinen A, Sonninen E, Lunkka J P. 2006. Stable isotope record in paleosol carbonates from the Chinese Loess Plateau: Implications for late Neogene paleoclimate and paleovegetation. Paleogeogr Palaeoclimatol Palaeoecol, 237: 359-369
[105]  Kutzbach J E, Guetter P J, Ruddiman W F, et al. 1989. Sensitivity of climate to Late Cenozoic uplift in Southern Asia and the American West: Numerical experiments. J Geophys Res, 94: 18393-18407
[106]  Wan S M, Li A, Clift P D, et al. 2007. Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Paleogeogr Paleoclimatol Paleoecol, 254: 561-582
[107]  Wang C S, Zhao X X, Liu Z F, et al. 2008. Constraints on the early uplift history of the Tibetan Plateau. Proc Natl Acad Sci USA, 105: 4987-4992
[108]  Wang P X, Clemens S, Beaufort L, et al. 2005. Evolution and variability of the Asian monsoon system: state of the art and outstanding issues. Quat Sci Rev, 24: 595-629
[109]  Wang X Y, Lu H Y, Vandenberghe J, et al. 2012. Late Miocene uplift of the NE Tibetan Plateau inferred from basin filling, planation and fluvial terraces in the Huang Shui catchment. Glob Planet Change, 88/89: 10-19
[110]  Wang Y, Deng T. 2005. A 25 M.y. isotopic record of palaeodiet and environmental change from fossil mammals and palaeosols from the NE margin of the Tibetan Plateau. Earth Planet Sci Lett, 236: 322-338
[111]  Willenbring J K, von Blanckenburg F. 2010. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. Nature, 465: 211-214
[112]  Wu G, Liu Y M, He B, et al. 2012. Thermal controls on the Asian Summer monsoon. Sci Report, 2: 404, doi: 10.1038/srep00404
[113]  Xiao G Q, Abels H A, Yao Z, et al. 2010. Asian aridification linked to the first step of the Eocene-Oligocene climate Transition (EOT) in obliquity-dominated terrestrial records (Xining Basin, China). Clim Past, 6: 627-657
[114]  Xu Z Q, Wang Q, Arnaud P, et al. 2013. Orogen-parallel ductile extension and extrusion of the Greater Himalaya in the late Oligocene and Miocene. Tectonics, 32: 191-215
[115]  Yin A, Harrison T M. 2000. Geological evolution of the Himalayan-Tibetan Orogen. Annu Rev Earth Planet Sci, 28: 211-280
[116]  Yin A. 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Sci Rev, 76: 1-131
[117]  Yu H B, Remer L A, Chin M, et al. 2012. Aerosols from overseas rival domestic emissions over North America. Science, 337: 566-569
[118]  Zachos J C, Pagani M, Sloan L, et al. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686-693
[119]  Zhang Z S, Wang H J, Guo Z T, et al. 2007a. What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratetbys Sea retreat? Paleogeogr Paleoclimatol Paleoecol, 245: 317-331
[120]  Zhang Z S, Wang H J, Guo Z T, et al. 2007b. Impacts of tectonic changes on the reorganization of the Cenozoic paleoclimatic patterns in China. Earth Planet Sci Lett, 257: 622-634
[121]  Zheng H B, Powell C M, An Z S, et al. 2000. Pliocene uplift of the northern Tibetan Plateau. Geology, 28: 715-718
[122]  曹家欣, 崔海亭, 1989. 山西榆社盆地上新世植物群及其环境意义. 地质科学, (4): 369-375
[123]  刘东生, 郑绵平, 郭正堂. 1998. 亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性. 第四纪研究, (3): 194-204
[124]  刘建辉, 张培震, 郑德文, 等. 2010. 贺兰山晚新生代隆升的剥露特征及其隆升模式. 中国科学: 地球科学, 40: 50-60
[125]  刘晓东, Dong B W. 2013. 青藏高原隆升对亚洲季风-干旱环境演化的影响. 科学通报, 2013, 58: 2906-2919
[126]  龙利群, 方小敏, 苗运法, 等. 2011. 新生代全球变冷背景下北部青藏高原变冷和干旱化事件: 西宁盆地早第三纪沉积物中正构烷烃和孢粉的记录. 科学通报, 56: 1221-1231
[127]  鹿化煜, 安芷生, 王晓勇, 等. 2004. 最近14 Ma青藏高原东北缘阶段性隆升的地貌证据. 中国科学D辑: 地球科学, 34: 855-86
[128]  鹿化煜, 胡挺, 王先彦. 2009. 1100万年以来中国北方风尘堆积与古气候变化的周期及驱动因素分析. 高校地质学报, 15, 2009: 149-158

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133