全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业科学  2014 

云杉属植物幼苗的异速比例关系

DOI: 10.11829\j.issn.1001-0629.2013-0005, PP. 415-422

Keywords: 异速比例关系,地上和地下呼吸速率,年净生产力,生物量,云杉幼苗

Full-Text   Cite this paper   Add to My Lib

Abstract:

?本研究以云杉属(Picea)8个物种幼苗为例,通过系统测定其地上、地下呼吸速率,年均净生产力,叶生物量以及总生物量,研究各特性相互间的异速比例关系(AllometricScalingRelationship)。结果表明,1)在异化速率方面,云杉8个物种经温度修正的平均单株地上、地下呼吸速率与相应生物量的异速指数分别为0.876和0.817;2)在同化速率方面,平均单株叶生物量与平均单株年净生产力的异速指数为1.191,平均单株叶生物量与其平均总生物量的异速指数为0.940,两者的异速指数非常接近代谢异速理论对植物小个体代谢速率指数为1的预测;3)不论是植物个体平均地上生物量与地下生物量间的异速指数(1.090),还是经温度修正的平均单株地上呼吸速率与地下呼吸速率的异速指数(1.168)均很接近理论预测值1。

References

[1]  Huxley J S.Problems of Relative Growth.London:Methuen & Company Press, 1932.
[2]  Peters R.The Ecological Implications of Body Size.London:Cambridge University Press, 1983.
[3]  Calder W A.Size, Function, and Life History.Cambridge:Harvard University Press, 1984.
[4]  Niklas K J.Plant Allometry:the Scaling of Form and Process.Chicago:Chicago University Press, 1994.
[5]  West G B, Brown J H, Enquist B J.A general model for the origin of allometric scaling laws in biology.Science, 1997, 276:122-126.
[6]  West G B, Brown J H, Enquist B J.A general model for the structure and allometry of plant vascular systems.Nature, 1999, 400:664-667.
[7]  West G B, Brown J H, Enquist B J.The fourth dimension of life:Fractal geometry and allometric scaling of organism.Science, 1999, 284:1677-1679.
[8]  Dodds P, Rothman D H, Weitz J S.Re-examination of the “3/4-law” of metabolism.Journal of Theoretical Biology, 2001, 209:9-27.
[9]  Kozlowski J, Konarzewski M.Is West, Brown and Enquist’s model of allometric scaling mathematically correct and biologically relevant.Functional Ecology, 2004, 18:283-289.
[10]  Tilman D, HilleRisLambers J, Harpole S, Dybzinski R, Fargione J, Clark C, Lehman C.Does metabolic theory apply to community ecology? It’s a matter of scale.Ecoloy, 2004, 85:1797-1799.
[11]  Kozlowski J, Konarzewski M.West, Brown and Enquist’s model of allometric scaling again:the same questions remain.Functional Ecology, 2005, 19:739-743.
[12]  Muller-Landau H, Condit R S, Chave J, Thomas S C, Bohlman S A, Bunyavejchewin S, Davies S, Foster R, Gunatilleke S, Gunatilleke N, Harms K E, Hart T, Hubbell S P, Itoh A, Kassim A R, LaFrankie J V, Lee H S, Losos E, Makana J R, Ohkubo T, Sukumar R, Sun I F, Supardi M N N, Tan S, Thompson J, Valencia R, Munoz G V, Wills C, Yamakura T, Chuyong G, Dattaraja H S, Esufali S, Hall P, Hernandez C, Kenfack D, Kiratiprayoon S, Suresh S H, Thomas D, Vallejo M I, Ashton P.Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests.Ecology Letters, 2006, 9:575-588.
[13]  Deng J M, Li T, Wang G X, Liu J, Yu Z L, Zhao C M, Ji M F, Zhang Q, Liu J Q.Trade-offs between the metabolic rate and population density of plants.PLoS One, 2008, 3:e1799.
[14]  Enquist B J, West G B, Charnov E L, Brown J H.Allometric scaling of production and life history variation in vascular plants.Nature, 1999, 401:907-911.
[15]  Niklas K J, Enquist B J.Invariant scaling relationships for interspecific plant biomass production rates and body size.Proceedings of the National Academy of Sciences, 2001, 98:2922-2927.
[16]  Enquist B J, Allen A P, Brown J H, Gillooly J F, Kerkhoff A J, Niklas K J, Price C A, West G B.Biological scaling:Does the exception prove the rule.Nature, 2007, 445:E9-10.
[17]  Li H T, Han X G, Wu J G.Lack of evidence for 3/4 scaling of metabolism in terrestrial plants.Intergrative Plant Biology, 2005, 47:1173-1183.
[18]  Mkel A, Valentine H T.Crown ration influences allometric scaling in trees.Ecology, 2006, 87:2967-2972.
[19]  Reich P B, Tjoelker M G, Machado J L, Oleksyn J.Universal scaling of respiratory metabolism, size and nitrogen in plants.Nature, 2006, 439:457-461.
[20]  Mori S, Yamaji K, Ishida A, Prokushkin S G, Masyagina O V, Hagihara A, Hoque A T M, Suwa R, Osawa A, Nishizono T, Ueda T, Kinjo M, Miyagi T, Koike T, Matsuura Y, Toma T, Zyryanova O A, Abaimov A P, Awaya Y, Araki M, Kawasaki T, Chiba Y, Umari M.Mixed-power scaling of whole-plant respiration from seedlings to giant trees.Proceedings of the National Academy of Sciences, 2010, 107:1447-1451.
[21]  郑万钧, 傅立国.中国植物志(第七卷).北京:科学出版社, 1978:468-489.
[22]  罗天祥.中国主要森林类型生物生产力格局及其数学模型.北京:中国科学院, 1996.
[23]  Gillooly J F, Brown J H, West G B, Savage V M, Charnov E L.Effects of size and temperature on metabolic rate.Science, 2001, 293:2248-2251.
[24]  Brown J H, Gillooly J F, Allen A P, Savage V M, West G B.Toward a metabolic theory of ecology.Ecology, 2004, 85:1771-1789.
[25]  Peng Y, Niklas K J, Reich P B, Sun S C.Ontogenetic shift in the scaling of dark respiration with whole-plant mass in seven shrub species.Functional Ecology, 2010, 24:502-512.
[26]  Cheng D L, Li T, Zhong Q L, Wang G X.Scaling relationship between tree respiration rates and biomass.Biology Letters, 2010, 6:715-717.
[27]  Reich P B, Walters M B, Ellsworth D S.From tropics to tundra:Global convergence in plant fuctioning.Proceedings of the National Academy of Sciences, 1997, 94:13730-13734.
[28]  Niklas K J, Midgley J J, Enquist B J.A general model for mass-growth-density relations across tree-dominated communities.Evolutionary Ecology Research, 2003, 5:459-468.
[29]  Allen A P, Gillooly J F, Brown J H.Linking the global carbon cycle to individual metabolism.Functional Ecology, 2005, 19:202-213.
[30]  Enquist B J, Kerkhoff A J, Stark S C Swenson N G, McCarthy M C, Price C A.A general integrative model for scaling plant growth, carbon flux, and functional trait spectra.Nature, 2007, 449:218-222.
[31]  Deng J M, Ran J Z, Wang Z Q, Fan Z X, Wang G X, Ji M F, Liu J, Wang Y, Liu J Q, Brown J H.Models and tests of optimal density and maximal yield for crop plants.Proceedings of the National Academy of Sciences, 2012, 109:15823-15828.
[32]  Deng J M, Zuo W Y, Wang Z Q, Fan Z X, Ji M F, Wang G X, Ran J Z, Zhao C M, Liu J Q, Niklas K J, Hammond S T, Brown J H.Insights into plant size-density relationships from models and agricultural crops.Proceedings of the National Academy of Sciences, 2012, 109:8600-8605.
[33]  Atkin O K, Tjoelker M G.Thermal acclimation and the dynmic response of plant respiration to temperature.Trends in Plant Science, 2003, 8:343-351.
[34]  Ryan M G.Foliar maintenance repiration of subalpine and boreal trees and shrubs in relation to nitrogen content.Plant, Cell and Environment, 1995, 18:765-772.
[35]  Reich P B, Walters M B, Ellsworth D S, Vose J M, Volin J C, Gresham C, Bowman W.Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span:A test across biomes and functional groups.Oecologia, 1998, 114:471-482.
[36]  Wright I J, Reich P B, Westoby M, Ackerly D D, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen J H C, Diemer M, Flexas J, Garnier E, Groom P K, Gulias J, Hikosaka K, Lamont B B, Lee T L, Lee W, Lusk C, Midgley J J, Navas M L, Uiinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov V I, Roumet C, Thomas S C, Tjoelker M G, Veneklass E J, Villar R.The worldwide leaf economics spectrum.Nature, 2004, 428:821-827.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133