Shen J, Li H, Neumann G, Zhang F.Nutrient uptake, cluster root formation and exudation of protons and citrate in Lupinus albus as affected by localized supply of phosphorus in a split-root system[J].Plant Science, 2005, 168:837-845.
[2]
Chen L S, Yang L T, Lin Z H.Roles of organic acid metabolism in plant tolerance to phosphorus deficiency[J].Progress in Botany, 2013, 74:213-237.
[3]
Tang H L, Li X Q, Zu C, Zhang F S, Shen J B.Spatial distribution and expression of intracellular and extracellular acid phosphatases of cluster roots at different developmental stages in white lupin[J].Journal of Plant Physiology, 2013, 170:1243-1250.
[4]
Shen J, Tang C, Rengel Z, Zhang F.Root-induced acidification and excess cation uptake by N2-fixing Lupinus albus grown in phosphorus-deficient soil[J].Plant and Soil, 2004, 260:69-77.
[5]
Shu L Z, Shen J B, Rengel Z, Zhang F S, Cawthray G R.Formation of cluster roots and citrate exudation by Lupinus albus in response to localized application of different phosphorus sources[J].Plant Science, 2007, 172:1017-1024.
[6]
Tang C, Han X Z, Qiao Y F, Jaillard B.Phosphorus deficiency does not enhance proton release by roots of soybean[Glycine max (L.) Murr.][J].Environmental and Experimental Botany, 2009, 67:228-234.
[7]
Tomasi N, Kretzschmar T, Espen L, Weisskopf L, Fuglsang A T, Palmgren M G, Neumannc G, Varanini Z, Pinton R, Martinoia E, Cesco S.Plasma membrane H+-ATPase-dependent citrate exudation from cluster roots of phosphate-deficient white lupin[J].Plant, Cell and Environment, 2009, 32:465-475.
[8]
Tadano T, Sakai H.Secretion of acid phosphatase by the roots of several crop species under phosphorus- deficient conditions[J].Soil Science and Plant Nutrition, 1991, 37(1):129-140.
[9]
Ma X F, Tudor S, Butler T, Ge Y X, Xi Y J, Bouton J, Harrison M, Wang Z Y.Transgenic expression of phytase and acid phosphatase genes in alfalfa (Medicago sativa) leads to improved phosphate uptake in natural soils[J].Molecular Breeding, 2012, 30:377-391.
Wang X R, Wang Y X, Tian J, Lim B L, Yan X L, Liao H.Overexpressing AtPAP15 enhances phosphorus efficiency in soybean[J].Plant Physiology, 2009, 151:233-240.
[13]
Liang C Y, Tian J, Lam H M, Lim B L, Yan X L, Liao H.Biochemical and molecular characterization of PvPAP3, a novel purple acid phosphatase isolated from common bean enhancing extracellular ATP utilization[J].Plant Physiology, 2010, 152:854-865.
[14]
Miller S S, Liu J Q, Allan D L, Menzhuber C J, Fedorova M, Vance C P.Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin[J].Plant Physiology, 2001, 127:594-606.
[15]
Wasaki J, Yamamura T, Shinano T, Osaki M.Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency[J].Plant and Soil, 2003, 248:129-136.
[16]
Anand A, Srivastava P K.A molecular description of acid phosphatase[J].Applied Biochemistry and Biotechnology, 2012, 167(8):2174-2197.
Li C C, Gui S H, Yang T, Walk T, Wang X R, Liao H.Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis[J].Annals of Botany, 2012, 109:275-285.
[19]
Ha S, Tran L S.Understanding plant responses to phosphorus starvation for improvement of plant tolerance to phosphorus deficiency by biotechnological approaches[J].Critical Reviews in biotechnology, 2013, doi:10.3109/07388551.2013.783549.
[20]
Vance C P, Uhde-Stone C, Allan D L.Phosphorus acquisition and use:Critical adaptations by plants for securing a nonrenewable resource[J].New Phytologist, 2003, 157:423-447.
[21]
Raghothama K G.Phosphate acquisition[J].Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50:665-693.
[22]
Plesnǐar M, Kastori R, Petrovic N, Pankovic′ D.Photosynthesis and chlorophyⅡfluorescence in sunflower (Helianthus annuus L.)leaves as affected by phosphorus nutrition[J].Journal of Experiment Botany, 1994, 45(7):919-924.
[23]
吴平, 印莉萍, 张立平.植物营养分子生理学[M].北京:科学出版社, 2001:103-105.
[24]
兰忠明.不同紫云英基因型对难溶性磷的活化、吸收机理研究[D].福州:福建农林大学, 2011.
[25]
Von-Uexküll H R, Mutert E.Global extent, development and economic impact of aicd soil[J].Plant and Soil, 1995, 171:1-15.
Gross M.Fears over phosphorus supplies[J].Current Biology, 2010, 20:386-387.
[28]
Bargaz A, Ghoulam C, Faghire M, Attar H A, Drevon J J.The nodule conductance to the O2 diffusion increases with high phosphorus content in the Phaseolus vulgaris-rhizobia symbiosis[J].Symbiosis, 2011, 53:157-164.
Keerthisinghe G, Hocking P J, Ryan P R, Delhaize E.Effect of phosphorous supply on the formation and function of proteoid roots of white lupin (Lupinus albus L.)[J].Plant, Cell and Environment, 1998, 21:467-478.
[31]
Ryan P R, Delhaize E, Jones D L.Function and mechanism of organic anion exudation from plant roots[J].Annual Review of Plant Biology, 2001, 52:527-560.
[32]
Wang X R, Shen J B, Liao H.Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops[J].Plant Science, 2010, 179:302-306.
[33]
Desnos T.Root branching responses to phosphate and nitrate[J].Current Opinion in Plant Biology, 2008, 11:82-87.
[34]
Niu Y F, Chai R S, Jin G L, Wang H, Tang C X, Zhang Y S.Responses of root architecture development to low phosphorus availability:A review[J].Annals of Botony, 2012, 112(2):391-408.
[35]
Sato A, Miura K.Root architecture remodeling induced by phosphate starvation[J].Plant Signaling and Behavior, 2011, 6(8):1122-1126.
[36]
Pang J Y, Ryan M H, Tibbett M, Cawthray G R, Siddique K H M, Bolland M D A, Denton M D, Lambers H.Variation in morphological and physiological parameters in herbaceous perennial legumes in response to phosphorus supply[J].Plant and Soil, 2010, 331:241-255.
[37]
Lynch J P.Roots of the second green revolution[J].Australian Journal of Botany, 2007, 55:493-512.
[38]
Liao H, Rubio G, Yan X, Cao A, Brown K M, Lynch J P.Effect of phosphorus availability on basal root shallowness in common bean[J].Plant and Soil, 2001, 232:69-79.
[39]
Lynch J P, Brown K M.Topsoil foraging-an architectural adaptation of plants to low phosphorus[J].Plant and Soil, 2001, 237:225-237.
Gilroy S, Jones D L.Through form to function:Root hair development and nutrient uptake[J].Trends in Plant Science, 2000, 5:56-60.
[42]
Brown L K, George T S, Thompson J A, Wright G, Lyon J, Dupuy L, Hubbard S F, White P J.What are the implications of variation in root hair length on tolerance to phosphorus deficiency in combination with water stress in barley (Hordeum vulgare)[J].Annals of Botany, 2012, 110:319-328.
[43]
Bustos R, Castrillo G, Linhares F, Puga M I, Rubio V, Pérez-Pérez J, Solano R, Leyva A, Paz-Ares J.A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis[J].PloS Genetic, 2010, 6, e1001102.doi:10.1371/journal.pgen.1001102.
Lambers H, Raven J A, Shaver G R, Smith S E.Plant nutrient acquisition strategies change with soil age[J].Trends in Ecology and Evolution, 2008, 23:95-103.
[46]
Denton M D, Veneklaas E J, Freimoser F M, Lambers H.Banksia species (Proteaceae) from severely phosphorus-impoverished soils exhibit extreme efficiency in the use and re-mobilization of phosphorus[J].Plant, Cell and Environment, 2007, 30:1557-1565.
[47]
Lambers H, Clements J C, Nelson M N.How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines[J].American Journal of Botany, 2013, 100(2):263-288.
[48]
Gilbert G A, Knight J D, Vance C P, Allan D L.Proteoid root development of phosphorus deficient lupin is mimicked by auxin and phosphonate[J].Annals of Botany, 2000, 85:921-928.
[49]
Rnegel Z.Genetic control of root exudation[J].Plant and Soil, 2002, 245:59-70.
[50]
Hnsinger P.Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes:A review[J].Plant and Soil, 2001, 237:173-195.
[51]
Khademi Z, Jones D L, Malakouti M J, Asadi F.Organic acids differ in enhancing phosphorus uptake by Triticum aestivum L.effects of rhizosphere concentration and counterion[J].Plant and Soil, 2010, 334:151-159.
[52]
Plaxton W C, Tran H T.Metabolic adaptations of phosphate-starved plants[J].Plant Physiology, 2011, 156: 1006-1015.
[53]
Bloan N S, Naidu R, Mahimairaja S.Influence of low molecular weight organic acids on the solubilization of phosphorus[J].Biology and Fertility of Soils, 1994, 18:311-319.
[54]
Dinke L B, Romheld V, Marschner H.Citric acid excretion and precipitation of calcium citrate in rhizosphere of white lupin(Lupinus albus)[J].Plant, Cell and Environment, 1989, 12:285-292.
[55]
Giles C D, Richardson A E, Druschel G K, Hill J E.Organic anion-driven solubilization of precipitated and sorbed phytate improves hydrolysis by phytases and bioavailability to Nicotiana tabacum[J].Soil Science, 2012, 177:591-598.
[56]
Subbarao G V, Ae N, Otani T.Genetic variation in acquisition, and utilization of phosphorus from iron-bound phosphorus in pigeonpea[J].Soil Science and Plant Nutrition, 1997, 43(3):511-519.
[57]
Ishikawa S, Adu-Gyamfi J J, Nakamura T, Yoshihara T, Watanabe T, Wagatsuma T.Genotypic variability in phosphorus solubilizing activity of root exudates by pigeonpea grown in low-nutrient environments[J].Plant and Soil, 2002, 245:71-81.
[58]
Lipton D S, Blanchar R W, Blevins D G.Citrate, malate, and succinate concentration in exudates from P-sufficient and P-stressed Medicago sativa L.seedlings[J].Plant Physiology, 1987, 85:315-317.
[59]
Wang B L, Tang X Y, Cheng L Y, Liu J Q, Cao Y, Allan D L, Vance C P, Shen J B.Nitric oxide is involved in phosphorus deficiency-induced cluster-root development and citrate exudation in white lupin[J].New Phytologist, 2010, 187:1112-1123.
[60]
Hernández G, Ramírez M, Valdés-López O, Tesfaye M, Graham M A, Czechowski T, Schlereth A, Wandrey M, Erban A, Cheung F, Wu H C, Lara M, Town C D, Kopka J, Udvardi M K, Vance C P.Phosphorus stress in common bean:Root transcript and metabolic responses[J].Plant Physiology, 2007, 144:752-767.
[61]
Shen H, Yan X I, Zhao M, Zheng S L, Wang X R.Exudation of organic acids in common bean as related to mobilization of aluminum- and iron-bound phosphates[J].Environmental and Experimental Botany, 2002, 48(1):1-9.
Kouas S, Debez A, Slatni T, Labidi N, Drevon J J, Abdelly C.Root proliferation, proton efflux, and acid phosphatase activity in common bean (Phaseolus vulgaris) under phosphorus shortage[J].Journal of Plant Biology, 2009, 52:395-402.
Ligaba A, Yamaguchi M, Shen H, Sasaki T, Yamamoto Y, Matsumoto H .Phosphorus deficiency enhances plasma membrane H+-ATPase activity and citrate exudation in greater purple lupin(Lupinus pilosus)[J].Functional Plant Biology, 2004, 31:1075-1083.
[69]
Shen H, Chen J, Wang Z, Yang C Y, Sasaki T, Yamamoto Y, Matsumoto H, Yan X L.Root plasma membrane H+-ATPase is involved in the adaptation of soybean to phosphorus starvation[J].Journal of Experimental Botany, 2006, 57:1353-1362.
[70]
Devaiah B N, Madhuvanthi R, Karthikeyan A S, Raghothama K G.Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis[J]. Molecular Plant, 2009, 2:43-58.
[71]
Nilsson L, Lundmark M, Jensen P E, Nielsen T H.The Arabidopsis transcription factor PHR1 is essential for adaptation to high light and retaining functional photosynthesis during phosphate starvation[J].Physiology Plant, 2012, 144:35-47.
Devaiah B N, Nagarajan V K, Raghothama K G.Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6[J].Plant Physiology, 2007, 145:147-159.
[74]
Chiou T J, Lin S I.Signaling network in sensing phosphate availability in plants[J].Annual Review of Plant Biology, 2011, 62:185-206.
[75]
Lin S I, Chiang S F, Lin W Y, Chen J W, Tseng C Y, Wu P C, Chiou T J.Regulatory network of microRNA399 and PHO2 by systemic signaling[J].Plant Physiology, 2008, 147:732-746.
[76]
Pant B D, Buhtz A, Kehr J, Scheible W R.MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis[J].The Plant Journal, 2008, 53:731-738.
[77]
Valdés-López O, Arenas-Huertero C, Ramírez M, Girard L, Sánchez F, Vance C P, Reyes J L, Hernández G.Essential role of MYB transcription factor:PvPHR1 and microRNA:PvmiR399 in phosphorus-deficiency signalling in common bean roots[J].Plant, Cell and Environment, 2008, 31(12):1834-1843.
[78]
Aung K, Lin S I, Wu C C, Huang Y T, Su C L, Chiou T J.Pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene[J].Plant Physiology, 2006, 141:1000-1011.
[79]
Bari R, Pant B D, Stitt M, Scheible W R.PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants[J].Plant Physiology, 2006, 141:988-999.