OALib Journal期刊
ISSN: 2333-9721
费用:99美元
过渡金属催化醇与胺有氧脱水反应及相关研究进展有机化学
DOI: 10.6023/cjoc201208016 , PP. 18-35
Keywords: 过渡金属催化 ,醇 ,胺和酰胺衍生物 ,N-烷基化反应 ,亚胺化反应 ,有氧氧化反应 ,接力方法学
Abstract:
与其他胺和酰胺衍生物的合成方法相比,过渡金属催化醇与各类胺和酰胺的脱水N-烷基化反应是一种相对绿色、原子经济性较高的方法,一般被称为“借氢”或“氢自动转移”反应及其方法学.近年来,在空气氛围下过渡金属催化醇与胺和酰胺的有氧脱水N-烷基化反应,可使用更稳定的金属催化剂、可在无配体、空气等更温和简单的条件下进行,也引起了人们的极大关注.主要介绍近年来过渡金属催化下醇与胺和酰胺在空气或者氧化剂作用下构建C—N,C=N键合成胺和酰胺衍生物以及亚胺类化合物的有氧脱水反应进展情况,同时也对相关有氧脱水C-烷基化反应进行简单介绍.相关反应的机理研究也将作适当讨论.
References
[1] (b) McGuire, J. L. Pharmaceuticals: Classes, Therapeutic Agents, Areas of Application, Vols. 1~4, Wiley-VCH, Weinheim, Germany, 2000.
[2] (c) Hili, R.; Yudin, A. K. Nat. Chem. Biol. 2006, 2, 284.
[3] (d) Cox, E. D.; Cook, J. M. Chem. Re v. 1995, 95, 1797.
[4] (g) Connor, E. E. Prim. Care Update Ob/Gyns 1998, 5, 32.
[5] (i) Park, S.-Y.; Fung, P.; Nishimura, N.; Jensen, D. R.; Fujii, H.; Zhao, Y.; Lumba, S.; Santiago, J.; Rodrigues, A.; Chow, T. F.; Alfred, S. E.; Bonetta, D.; Finkelstein, R.; Provart, N. J.; Desveaux, D.; Rodriguez, P. L.; McCourt, P.; Zhu, J.-K.; Schroeder, J. I.; Volkman, B. F.; Cutler, S. R. Science 2009, 324, 1068.
[6] (b) Yet, L. Angew. Chem., Int. Ed. 2001, 40, 875.
[7] (d) Taggi, A. E.; Hafez, A. M.; Lectka, T. Acc. Chem. Res. 2003, 36, 10.
[8] (f) Ma, J.-A. Chem. Soc. Rev. 2006, 35, 630.
[9] (i) Gawronski, J.; Wascinska, N.; Gajewy, J. Chem. Rev. 2008, 108, 5227.
[10] (k) Merino, P.; Marqués-López, E.; Herrera, R. P. Adv. Synth. Catal. 2008, 350, 1195.
[11] (m) Martin, S. F. Pure Appl. Chem. 2009, 81, 195.
[12] (o) Li, C.-J. Acc. Chem. Res. 2010, 43, 581.
[13] (u) Marques, C. S.; Burke, A. J. ChemCatChem 2011, 3, 635.
[14] (w) Nielsen, M.; Worgull, D.; Zweifel, T.; Gschwend, B.; Bertelsen, S.; J?gensen, K. A. Chem. Commun. 2011, 47, 632.
[15] (b) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338.
[16] (a) Tripathi, R. P.; Verma, S. S.; Pandey, J.; Tiwari, V. K. Curr. Org. Chem. 2008, 12, 1093.
[17] (c) Baxter, E. W.; Reitz, A. B. In Organic Reactions, Vol. 59, Ed.: Overman, L. E., Wiley, Singapore, 2002.
[18] (b) Severin, R.; Doye, S. Chem. Soc. Rev. 2007, 36, 1407.
[19] (a) Veige, A. S. Polyhedron 2008, 27, 3177.
[20] (c) Evano, G.; Coste, A.; Jouvin, K. Angew. Chem., Int. Ed. 2010, 49, 2840.
[21] (a) Salvatore, R. N.; Yoon, C. H.; Jung, K. W. Tetrahedron 2001, 57, 7785.
[22] Nef, J. U. Liebigs Ann. Chem. 1901, 318, 137.
[23] (a) Grigg, R.; Mitchell, T. R. B.; Sutthivaiyakit, S.; Tongpenyai, N. J. Chem. Soc., Chem. Commun. 1981, 611.
[24] (c) Maruhashi, S.-I.; Kondo, K.; Hakata, T. Tetrahedron Lett. 1982, 23, 229.
[25] (b) Nixon, T. D.; Whittlesey, M. K.; Williams, J. M. J. Dalton Trans. 2009, 753.
[26] (d) Suzuki, T. Chem. Rev. 2011, 111, 1825.
[27] (f) Crabtree, R. H. Organometallics 2011, 30, 17.
[28] (h) Guillena, G.; Ramón, D. J.; Yus, M. Angew. Chem., Int. Ed. 2007, 46, 2358.
[29] (a) Emer, E.; Sinisi, R.; Capdevila, M. G.; Petruzziello, D.; De Vincentiis, F.; Cozzi, P. G. Eur. J. Org. Chem. 2011, 647 and references cited therein.
[30] (c) Qin, H.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2007, 46, 409.
[31] (f) Zhan, Z.-P.; Yu, J.-L.; Liu, H.-J.; Cui, Y.-Y.; Yang, R.-F.; Yang, W.-Z.; Li, J.-P. J. Org. Chem. 2006, 71, 8298.
[32] (h) Tsai, C.-Y.; Sung, R.; Zhuang, B.-R.; Sung, K. Tetrahedron 2010, 66, 6869.
[33] (j) Das, B.; Reddy, P. R.; Sudhakar, C.; Lingaiah, M. Tetrahedron Lett. 2011, 52, 3521.
[34] (l) Ohshima, T.; Miyamoto, Y.; Ipposhi, J.; Nakahara, Y.; Utsunomiya, M.; Mashima, K. J. Am. Chem. Soc. 2009, 131, 14317.
[35] (n) Tao, Y.; Wang, B.; Wang, B.; Qu, L.; Qu, J. Org. Lett. 2010, 12, 2726.
[36] Blackburn, L.; Taylor, R. J. K. Org. Lett. 2001, 3, 1637.
[37] Guerin, C.; Bellosta, V.; Guillamot, G.; Cossy, J. Org. Lett. 2011, 13, 3534.
[38] Likhar, P. R.; Arundhathi, R.; Kantam, M. L. Eur. J. Org. Chem. 2009, 5383.
[39] (a) Martínez-Asencio, A.; Ramón, D. J.; Yus, M. Tetrahedron Lett. 2010, 51, 325.
[40] Cui, X.; Shi, F.; Tse, M. K.; Goerdes, D.; Thurow, K.; Beller, M.; Deng, Y. Adv. Synth. Catal. 2009, 351, 2949.
[41] Liu, C.; Liao, S.; Li, Q.; Feng, S.; Sun, Q.; Yu, X.; Xu, Q. J. Org. Chem. 2011, 76, 5759 and references cited therein.
[42] (b) Gligorich, K. M.; Sigman, M. S. Chem. Commun. 2009, 3854.
[43] (f) Arita, S.; Koike, T.; Kayaki, Y.; Ikariya, T. Angew. Chem., Int. Ed. 2008, 47, 2447.
[44] (h) Izumi, A.; Obora, Y.; Sakaguchi, S.; Ishii, Y. Tetrahedron Lett. 2006, 47, 9199.
[45] (b) Cejudo-Marín, R.; Alzuet, G.; Ferrer, S.; Borrás, J. Inorg. Chem. 2004, 43, 6805.
[46] (d) Liang, J.; Lipscomb, W. N. Biochemistry 1989, 28, 9724.
[47] (f) Dimroth, J.; Keilitz, J.; Schedler, U.; Schom?cker, R.; Haag, R. Adv. Synth. Catal. 2010, 352, 2497.
[48] (c) Fujita, K.-I.; Enkoi, Y.; Yamaguchi, R. Tetrahedron 2008, 64, 1943.
[49] (b) Sprung, M. M. Chem. Rev. 1940, 26, 297.
[50] (d) Adams, J. P. J. Chem. Soc., Perkin Trans. 1 2000, 125.
[51] (c) Saluzzo, C.; Lemaire, M. Ad v . Synth. Catal. 2002, 344, 915.
[52] (e) Krische, M. J.; Sun, Y. Special issue on hydrogenation and transfer hydrogenation. Acc. Chem. Res. 2007, 40, issue 12.
[53] (b) Corma, A.; Ródenas, R.; Sabater, M. J. Chem. Eur. J. 2010, 16, 254.
[54] (q) Yin, B.; Zhang, Y.; Xu, L.-W. Synthesis 2010, 3583.
[55] (s) Xie, J.-H.; Zhu, S.-F.; Zhou, Q.-L. Chem. Rev. 2011, 111, 1713.
[56] Martínez-Asencio, A.; Yus, M.; Ramón, D. J. Synthesis 2011, 3730.
[57] Ohta, H.; Yuyama, Y.; Uozumi, Y.; Yamada, Y. M. A. Org. Lett. 2011, 13, 3892.
[58] (a) Gonzalez-Arellano, C.; Yoshida, K.; Luque, L.; Gai, P. L. Green Chem. 2010 12, 1281.
[59] (c) Valotl, F.; Fachel, F.; Jacquot, R.; Spagnol, M.; Lemairel, M. Tetrahedron Lett. 1999, 40, 3689.
[60] (b) Cano, R.; Ramón, D. J.; Yus, M. J. Org. Chem. 2011, 76, 5547.
[61] (d) He, J.; Kim, J. W.; Yamaguchi, K.; Mizuno, N. Angew. Chem., Int. Ed. 2009, 48, 9888.
[62] (f) He, L.; Lou, X.-B.; Ni, J.; Liu, Y.-M.; Cao, Y.; He, H.-Y.; Fan, K.-N. Chem. Eur. J. 2010, 16, 13965.
[63] (b) Li, C.-J. Acc. Chem. Res. 2009, 42, 335.
[64] (d) Li, Z.; Bohle, S.; Li, C.-J. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 8928.
[65] (b) Markó, I. E.; Giles, P. R.; Tsukazaki, M.; Brown, S. M.; Urch, C. J. Science 1996, 274, 2044.
[66] (d) Gamez, P.; Arends, I. W. C. E.; Reedijk, J.; Sheldon, R. A. Chem. Commun. 2003, 2414.
[67] (a) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem., Int. Ed. 2011, 50, 11062.
[68] (d) Zhao, Z.; Peng, F. Angew. Chem., Int. Ed. 2010, 49, 9566.
[69] Li, Q.; Fan, S.; Sun, Q.; Tian, H.; Yu, X.; Xu, Q. Org. Biomol. Chem. 2012, 10, 2966 and references cited therein.
[70] Tian, H.; Yu, X.; Li, Q.; Wang, J.; Xu, Q. Adv. Synth. Catal. 2012, 354, 2671.
[71] Yamada, Y. M. A.; Uozumi, Y. Tetrahedron 2007, 63, 8492.
[72] Allen, L. J.; Crabtree, R. H. Green Chem. 2010, 12, 1362.
[73] Tang, G.; Cheng, C.-H. Adv. Synth. Catal. 2011, 353, 1918.
[74] (a) Palacios, F.; Alonso, C.; Aparicio, D.; Rubiales, G.; de los Santos, J. M. Tetrahedron 2007, 63, 523.
[75] (b) Fresneda, P. M.; Molina, P. Synlett 2004, 1.
[76] (b) Lang, X.; Ji, H.; Chen, C.; Ma, W.; Zhao, J. Angew. Chem., Int. Ed. 2011, 50, 3934.
[77] (d) Samec, J. S. M.; éll, A. H.; B?ckvall, J.-E. Chem. Eur. J. 2005, 11, 2327.
[78] Medvedeva, A. S.; Mareev, A. V.; Borisova, A. I.; Afonin, A. V. ARKIVOC 2003, 13, 157.
[79] (a) Gnanaprakasam, B.; Zhang, J.; Milstein, D. Angew. Chem., Int. Ed. 2010, 49, 1468.
[80] (c) Esteruelas, M. A.; Honczek, N.; Oliván, M.; Onate, E.; Valencia, M. Organometallics 2011, 30, 2468.
[81] (e) Shiraishi, Y.; Ikeda, M.; Tsukamoto, D.; Tanaka, S.; Hiraia, T. Chem. Commun. 2011, 47, 4811.
[82] Sun, H.; Su, F.-Z.; Ni, J.; Cao, Y.; He, H.-Y.; Fan, K.-N. Angew. Chem., Int. Ed. 2009, 48, 4390.
[83] Kegnaes, S.; Mielby, J.; Mentzel, U. V.; Christensen, C. H.; Riisager, A. Green Chem. 2010, 12, 1437.
[84] Kang, Q.; Zhang, Y. Green Chem. 2012, 14, 1016.
[85] Kwon, M. S.; Kim, N.; Seo, S. H.; Park, I. S.; Cheedrala, R. K.; Park, J. Angew. Chem., Int. Ed. 2005, 44, 6913.
[86] Xu, Q.; Tian, H.; Jin, L. CN 102775288, 2012 [Chem. Abstr. 2012, 158, 11329].
[87] (a) Deutsch, C.; Krause, N.; Lipshutz, B. H. Chem. Re v. 2008, 108, 2916.
[88] (c) Lipshutz, B. H. Synlett 2009, 509.
[89] (a) Brooks, G. T.; Roberts, T. R. Pesticide Chemistry and Bioscience, Royal Society of Chemistry, Cambridge, U.K., 1999.
[90] (e) Humphrey, J. M.; Chamberlin, A. R. Chem. Rev. 1997, 97, 2243.
[91] (f) Hansch, C.; Sammes, P. G.; Taylor, J. B. Comprehensive Medicinal Chemistry, Vol. 2, Pergamon Press, Oxford, 1990, Chapter 7.1.
[92] (h) Kleemann, A.; Engel, J.; Kutscher, B.; Reichert, D. Pharmaceutical Substances, Synthesis, Patents, Applications, Thieme, Stuggart, 1999.
[93] (a) Bloch, R. Chem. Re v. 1998, 98, 1407.
[94] (c) Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2002, 35, 984.
[95] (e) Córdova, A. Acc. Chem. Res. 2004, 37, 102.
[96] (g) D?mling, A. Chem. Rev. 2006, 106, 17.
[97] (h) Erkkil?, A.; Majander, I.; Pihko, P. M. Chem. Rev. 2007, 107, 5416.
[98] (j) Yamada, K.-I.; Tomioka, K. Chem. Re v. 2008, 108, 2874.
[99] (l) Ordó?ez, M.; Rojas-Cabrera, H.; Cativiela, C. Tetrahedron 2009, 65, 17.
[100] (n) de Armas, P.; Tejedor, D.; Garía-Tellado, F. Angew. Chem., Int. Ed. 2010, 49, 1013.
[101] (p) Akhmetova, V. R.; Khabibullina, G. R.; Rakhimova, E. B.; Vagapov, R. A.; Khairullina, R. R.; Niatshina, Z. T.; Murzakova, N. N. Mol. Diversity 2010, 14, 463.
[102] (r) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626.
[103] (t) Adrio, J.; Carretero, J. C. Chem. Commun. 2011, 47, 6784.
[104] (v) Ramadhar, T. R.; Batey, R. A. Synthesis 2011, 1321.
[105] (a) Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534.
[106] (c) Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054.
[107] (b) Burkhardt, E. R.; Karl Matos, K. Chem. Rev. 2006, 106, 2617.
[108] (a) Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795.
[109] (c) Müller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675.
[110] (b) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318.
[111] (d) DeKorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064.
[112] (b) Chiappe, C.; Pieraccini, D. Green Chem. 2003, 5, 193.
[113] Guillena, G.; Ramón, D. J.; Yus, M. Chem. Re v. 2010, 110, 1611.
[114] (b) Watanabe, Y.; Tsuji, Y.; Ohsugi, Y. Tetrahedron Lett. 1981, 22, 2667.
[115] (a) Watson, A. J. A.; Williams, J. M. J. Science 2010, 329, 635.
[116] (c) Hamid, M. H. S. A.; Slatford, P. A.; Williams, J. M. J. Ad v. Synth. Catal. 2007, 349, 1555.
[117] (e) B?hn, S.; Imm, S.; Neubert, L.; Zhang, M.; Neumann, H.; Beller, M. ChemCatChem 2011, 3, 1853.
[118] (g) Dobereiner, G. E.; Crabtree, R. H. Chem. Re v. 2010, 110, 681.
[119] (i) Fujita, K.-I.; Yamaguchi, R. Synlett 2005, 560.
[120] (b) Guérinot, A.; Reymond, S.; Cossy, J. Eur. J. Org. Chem. 2011, 647.
[121] (d) Zhan, Z.-P.; Yang, W.-Z.; Yang, R.-F.; Yu, J.-L.; Li, J.-P.; Liu, H.-J. Chem. Commun. 2006, 3352.
[122] (e) Terrasson, V.; Marque, S.; Georgy, M.; Campagne, J.-M.; Prim, D. Adv. Synth. Catal. 2006, 348, 2063.
[123] (g) Zhao, Y.; Foo, S. W.; Saito, S. Angew. Chem., Int. Ed. 2011, 50, 3006.
[124] (i) Sreedhar, B.; Reddy, P. S.; Reddy, M. M.; Neelima B.; Arundhathi, R. Tetrahedron Lett. 2007, 48, 8174.
[125] (k) Ozawa, F.; Okamoto, H.; Kawagishi, S.; Yamamoto, S.; Minami, T.; Yoshifuji, M. J. Am. Chem. Soc. 2002, 124, 10968.
[126] (m) Utsunomiya, M.; Miyamoto, Y.; Ipposhi, J.; Ohshima, T.; Mashima, K. Org. Lett. 2007, 9, 3371.
[127] (o) Roggen, M.; Carreira, E. M. J. Am. Chem. Soc. 2010, 132, 11917.
[128] Kanno, H.; Taylor, R. J. K. Tetrahedron Lett. 2002, 43, 7337.
[129] Guerin, C.; Bellosta, V.; Guillamot, G.; Cossy, J. Eur. J. Org. Chem. 2012, 15, 2990.
[130] Shi, F.; Tse, M. K.; Cui, X.; Goerdes, D.; Michalik, D.; Thurow, K.; Deng, Y.; Beller, M. Angew. Chem., Int. Ed. 2009, 48, 5912.
[131] (b) Martínez-Asencio, A.; Ramón, D. J.; Yus, M. Tetrahedron 2011, 67, 3140.
[132] Feng, S. L.; Liu, C. Z.; Li, Q.; Yu, X. C.; Xu, Q. Chin. Chem. Lett. 2011, 22, 1021.
[133] (a) Sheldon, R. A.; Arends, I. W. C. E.; Brink, G.-J. T.; Dijksman, A. Acc. Chem. Res. 2002, 35, 774.
[134] (c) Stahl, S. S. Angew. Chem., Int. Ed. 2004, 43, 3400.
[135] (d) Naota, T.; Takaya, H.; Murahashi, S.-I. Chem. Rev. 1998, 98, 2599.
[136] (e) Muzart, J. Tetrahedron 2003, 59, 5789.
[137] (g) Zhang, J.; Li, S.; Fu, X.; Wayland, B. B. Dalton Trans. 2009, 3661.
[138] (a) Chohan, Z. H.; Shad, H. A.; Nasim, F.-H. Appl. Organomet. Chem. 2009, 23, 319 and references therein.
[139] (c) Zhang, T.; Wang, W.; Gu, X.; Shi, M. Organometallics 2008, 27, 753.
[140] (e) Evelhoch, J. L. E.; Bocian, D. F.; Sudmeier, J. L. Biochemistry 1981, 20, 4951.
[141] (a) Watanabe, Y.; Morisaki, Y.; Kondo, T.; Mitsudo, T. J. Org. Chem. 1996, 61, 4214.
[142] (b) Watanabe, Y.; Tsuji, Y.; Ige, H.; Ohsugi, Y.; Ohta, T. J. Org. Chem. 1984, 49, 3359.
[143] Yu, X.; Jiang, L.; Li, Q.; Xie, Y. ; Xu, Q. Chin. J. Chem. 2012, 30, 2322.
[144] (a) Layer, R. W. Chem. Rev. 1963, 63, 489.
[145] (c) Patai, S. The Chemistry of the Carbon—Nitrogen Double Bond (Chemistry of Functional Goups), Wiley-Interscience, New York, 1970.
[146] (a) Gladiali, S.; Alberico, E. Chem. Soc. Rev. 2006, 35, 226.
[147] (b) Samec, J. S. M.; B?ckvall, J.-E.; Andersson, P. G.; Brandt, P. Chem. Soc. Rev. 2006, 35, 237.
[148] (d) Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97.
[149] (a) Kwon, M. S.; Kim, S.; Park, S.; Bosco, W.; Chidrala, R. K.; Park, J. J. Org. Chem. 2009, 74, 2877.
[150] (c) Zhang, Y.; Qi, X.; Cui, X.; Shi, F.; Deng, Y. Tetrahedron Lett. 2011, 52, 1334.
[151] Kawahara, R.; Fujita, K.-I.; Yamaguchi, R. Adv. Synth. Catal. 2011, 353, 1161.
[152] Yu, X.; Liu, C.; Jiang, L.; Xu, Q. Org. Lett. 2011, 13, 6184.
[153] (b) Martínez, M.; Ramón, D. J.; Yus, M. Org. Biomol. Chem. 2009, 7, 2176.
[154] (a) Shi, F.; Tse, M. K.; Zhou, S.; Pohl, M. M.; Radnik, J.; Hübner, S.; J?hnisch, K.; Brückner, A.; Beller, M. J. Am. Chem. Soc. 2009, 131, 1775.
[155] (c) Yamaguchi, K.; He, J.; Oishi, T.; Mizuno, N. Chem. Eur. J. 2010, 16, 7199.
[156] (e) Cui, X.; Zhang, Y.; Shi, F.; Deng, Y. Chem. Eur. J. 2011, 17, 1021.
[157] (a) Li, C.-J.; Li, Z. Pure Appl. Chem. 2006, 78, 935.
[158] (c) Scheuermann, C. J. Chem. Asian J. 2010, 5, 436.
[159] (a) Semmelhack, M. F.; Schmid, C. R.; Cortes, D. A.; Chou, C. S. J. Am. Chem. Soc. 1984, 106, 3374.
[160] (c) Markó, I. E.; Gautier, A.; Dumeunier, R.; Doda, K.; Philippart, F.; Brown, S. M.; Urch, C. J. Angew. Chem., Int. Ed. 2004, 43, 1588.
[161] (d) Hoover, J. M.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 16901.
[162] (b) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780.
[163] (c) Klussmann, M.; Sureshkumar, D. Synthesis 2011, 353.
[164] (e) Stefani, H. A.; Guarezemini, A. S.; Cella, R. Tetrahedron 2010, 66, 7871.
[165] (b) Rendler, S.; Oestreich, M. Angew. Chem., Int. Ed. 2007, 46, 498.
[166] Jiang, L.; Jin, L.; Tian, H.; Yuan, X.; Yu, X.; Xu, Q. Chem. Commun. 2011, 47, 10833.
[167] Yamada, Y. M. A.; Uozumi, Y. Org. Lett. 2006, 8, 1375.
[168] (a) Thomé, I.; Nijs, A.; Bolm, C. Chem. Soc. Rev. 2012, 41, 979.
[169] (b) Leadbeater, N. E. Nat. Chem. 2010, 2, 913.
[170] (c) Buchwald, S. L.; Bolm, C. Angew. Chem., Int. Ed. 2009, 48, 5586.
[171] Liao, S.; Yu, K.; Li, Q.; Tian, H.; Zhang, Z.; Yu, X.; Xu, Q. Org. Biomol. Chem. 2012, 10, 2973 and references cited therein.
[172] (a) Largeron, M.; Fleury, M.-B. Angew. Chem., Int. Ed. 2012, 51, 5409.
[173] (c) Jiang, G.; Chen, J.; Huang, J.-S.; Che, C.-M. Org. Lett. 2009, 11, 4568.
[174] Schiff, H. Annals 1864, 131, 118.
[175] Yusubov, M. S.; Chi, K.-W.; Park, J. Y.; Karimovc, R.; Zhdankinc, V. V. Tetrahedron Lett. 2006, 47, 6305.
[176] (b) Maggi, A.; Madsen, R. Organometallics 2012, 31, 451.
[177] (d) Cano, R.; Ramón, D. J.; Yus, M. J. Org. Chem. 2011, 76, 5547.
[178] Kim, J. W.; He, J.; Yamaguchi, K.; Mizuno, N. Chem. Lett. 2009, 38, 920.
[179] He, W.; Wang, L.; Sun, C.; Wu, K.; He, S.; Chen, J.; Wu, P.; Yu, Z. Chem. Eur. J. 2011, 17, 13308.
[180] Sithambaram, S.; Kumar R.; Son, Y.-C.; Suib, S. L. J. Catal. 2008, 253, 269.
[181] Kim, S.; Bae, S. W.; Lee, J. S.; Park, J. Tetrahedron 2009, 65, 1461.
Full-Text
Contact Us
service@oalib.com
QQ:3279437679
WhatsApp +8615387084133