全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

嗜碱Bacillussp.N16-5不同碳源条件下比较蛋白质组分析

, PP. 1117-1127

Keywords: 嗜碱Bacillussp.N16-5,嗜碱微生物,胞浆蛋白质,2-DE

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了解碳水化合物对嗜碱微生物代谢途径的影响,用蛋白质组学方法比较分析了不同碳源条件下培养的嗜碱菌的胞浆蛋白质变化,试图找到差异表达的蛋白.分离自内蒙古乌杜淖尔碱湖的嗜碱Bacillussp.N16-5,在含有5种不同碳源(葡萄糖、甘露糖、半乳糖、阿拉伯糖和木糖)的培养基中培养.比较蛋白质组学分析鉴定了61个差异表达蛋白,它们主要参与碳水化合物代谢、氨基酸转运和代谢、能量的产生和贮存.结果表明,不同碳水化合物条件下参与中央代谢途径酶的丰度发生了很大的变化,尤其是碳代谢调控蛋白A(CcpA)均被上调.同时发现,在CcpA参与调控的碳代谢抑制现象中戊糖表现出比己糖更强的效应.上述结果为进一步理解嗜碱微生物碳水化合物代谢奠定了基础.

References

[1]  1 Horikoshi K. Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev, 1999, 63: 735—750
[2]  2 Rothschild L J, Mancinelli R L. Life in extreme environments. Nature, 2001, 409: 1092—1101
[3]  3 Padan E, Bibi E, Ito M, et al. Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta, 2005, 1717: 67—88
[4]  4 Gomes J, Steiner W. The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotech, 2004, 42: 223—235
[5]  5 Coolbear T, Daniel R M, Morgan H W. The enzymes from extreme thermophiles: bacterial sources, thermostabilities and industrial
[6]  relevance. Adv Biochem Eng Biotechnol, 1992, 45: 57—98
[7]  6 Adams M W, Perler F B, Kelly R M. Extremozymes: expanding the limits of biocatalysis. Biotechnology, 1995, 13: 662—668
[8]  7 Eisenberg H. Life in unusual environments: progress in understanding the structure and function of enzymes from extreme halophilic
[9]  bacteria. Arch Biochem Biophys, 1995, 318: 1—5
[10]  8 Ishida M, Yoshida M, Oshima T. Highly efficient production of enzymes of an extreme thermophile, Thermus thermophilus: a practical
[11]  method to overexpress GC-rich genes in Escherichia coli. Extremophiles, 1997, 1: 157—162
[12]  9 Hough D W, Danson M J. Extremozymes. Curr Opin Chem Biol, 1999, 3: 39—46
[13]  10 Breithaupt H. The hunt for living gold. The search for organisms in extreme environments yields useful enzymes for industry. EMBO Rep,
[14]  2001, 2: 968—971
[15]  11 Hoondal G S, Tiwari R P, Tewari R, et al. Microbial alkaline pectinases and their industrial applications: a review. Appl Microbiol
[16]  Biotechnol, 2002, 59: 409—418
[17]  12 Marhuenda-Egea F C, Bonete M J. Extreme halophilic enzymes in organic solvents. Curr Opin Biotechnol, 2002, 13: 385—389
[18]  13 Schiraldi C, De Rosa M. The production of biocatalysts and biomolecules from extremophiles. Trends Biotechnol, 2002, 20: 515—521
[19]  14 Ferrer M, Golyshina O, Beloqui A, et al. Mining enzymes from extreme environments. Curr Opin Microbiol, 2007, 10: 207—214
[20]  15 Voigt B, Hoile T, Jurgen B, et al. The glucose and nitrogen starvation response of Bacillus licheniformis. Proteomics, 2007, 7: 413—423
[21]  16 Gilmour R, Messner P, Guffanti A A, et al. Two-dimensional gel electrophoresis analyses of pH-dependent protein expression in
[22]  facultatively alkaliphilic Bacillus pseudofirmus OF4 lead to characterization of an S-layer protein with a role in alkaliphily. J Bacteriol,
[23]  2000, 182: 5969—5981
[24]  17 Hecker M, Volker U. Towards a comprehensive understanding of Bacillus subtilis cell physiology by physiological proteomics. Proteomics,
[25]  2004, 4: 3727—3750
[26]  18 Sonenshein A L. Control of key metabolic intersections in Bacillus subtilis. Nat Rev Microbiol, 2007, 5: 917—927
[27]  19 Gorke B, Stulke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol, 2008, 6: 613—
[28]  624
[29]  20 Grundy F J, Waters D A, Allen S H, et al. Regulation of the Bacillus subtilis acetate kinase gene by CcpA. J Bacteriol, 1993, 175: 7348—
[30]  7355
[31]  21 Ma Y T X, Zhou P, Wang D. Production and some properties of alkaline b-mannanase (in Chinese). Acta Microbiol Sin, 1991, 31: 443—
[32]  448
[33]  22 Snijders A P, Walther J, Peter S, et al. Reconstruction of central carbon metabolism in Sulfolobus solfataricus using a two-dimensional gel
[34]  electrophoresis map, stable isotope labelling and DNA microarray analysis. Proteomics, 2006, 6: 1518—1529
[35]  23 Horikoshi K. Production of alkaline enzymes by alkalophilic microorganisms. Agric Biol Chem, 1971, 36: 1407—1414
[36]  novel proteins involved in aromatic degradation and a clear link between aromatic catabolism and gluconeogenesis via
[37]  24 Shevchenko A, Wilm M, Vorm O, et al. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem, 1996, 68: 850—858
[38]  25 Gardy J L, Laird M R, Chen F, et al. PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained
[39]  from comparative proteome analysis. Bioinformatics, 2005, 21: 617—623
[40]  26 Tatusov R L, Galperin M Y, Natale D A, et al. The COG database: a tool for genome-scale analysis of protein functions and evolution.
[41]  Nucleic Acids Res, 2000, 28: 33—36
[42]  27 Graham R L, Pollock C E, O''Loughlin S N, et al. Multidimensional analysis of the insoluble sub-proteome of Oceanobacillus iheyensis
[43]  HTE831, an alkaliphilic and halotolerant deep-sea bacterium isolated from the Iheya ridge. Proteomics, 2007, 7: 82—91
[44]  28 Pedersen S, Bloch P L, Reeh S, et al. Patterns of protein synthesis in E. coli: a catalog of the amount of 140 individual proteins at different
[45]  growth rates. Cell, 1978, 14: 179—190
[46]  29 VanBogelen R A, Schiller E E, Thomas J D, et al. Diagnosis of cellular states of microbial organisms using proteomics. Electrophoresis,
[47]  1999, 20: 2149—2159
[48]  30 Qi S W, Chaudhry M T, Zhang Y, et al. Comparative proteomes of Corynebacterium glutamicum grown on aromatic compounds revealed
[49]  fructose-1,6-bisphosphatase. Proteomics, 2007, 7: 3775—3787
[50]  31 Wacker I, Ludwig H, Reif I, et al. The regulatory link between carbon and nitrogen metabolism in Bacillus subtilis: regulation of the gltAB
[51]  operon by the catabolite control protein CcpA. Microbiology, 2003, 149: 3001—3009
[52]  32 Singh K D, Schmalisch M H, Stulke J, et al. Carbon catabolite repression in Bacillus subtilis: quantitative analysis of repression exerted by
[53]  different carbon sources. J Bacteriol, 2008, 190: 7275—7284
[54]  33 Commichau F M, Gunka K, Landmann J J, et al. Glutamate metabolism in Bacillus subtilis: gene expression and enzyme activities evolved
[55]  to avoid futile cycles and to allow rapid responses to perturbations of the system. J Bacteriol, 2008, 190: 3557—3564
[56]  34 Maynes J T, Yuan R G, Snyder, F F. Identification, expression, and characterization of Escherichia coli guanine deaminase. J Bacteriol,
[57]  2000, 182: 4658—4660
[58]  35 Petranovic D, Guedon E, Sperandio B, et al. Intracellular effectors regulating the activity of the Lactococcus lactis CodY pleiotropic
[59]  transcription regulator. Mol Microbiol, 2004, 53: 613—621

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133