全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

硅化超顺磁氧化铁纳米颗粒标记人羊膜间充质细胞的效率及其对细胞增殖的影响

, PP. 1154-1160

Keywords: 人羊膜间充质细胞,超顺磁性氧化铁纳米颗粒,细胞标记

Full-Text   Cite this paper   Add to My Lib

Abstract:

旨在探讨一种新型硅化超顺磁性氧化铁纳米颗粒标记人羊膜间充质细胞的最佳方法,并检测其对细胞增殖的影响.用不同浓度的Si-SPIO和多聚赖氨酸混合制备PLL-Si-SPIO复合物,标记体外培养的hAMCs.利用普鲁士蓝染色和透射电子显微镜等方法对Si-SPIO的标记情况进行分析鉴定.分析Si-SPIO标记后1~4周铁颗粒在细胞内的维持与稳定.应用MTS分析法探讨经Si-SPIO标记后hAMCs的增殖活性.Si-SPIO标记后的hAMCs移植到小鼠纹状体内1周,鉴定Si-SPIO阳性细胞的存活与分布.观察发现,hAMCs经Si-SPIO标记后细胞内可检测到大量铁颗粒,铁颗粒能在细胞内维持4周以上.Si-SPIO标记具有浓度依赖性,最适浓度为20μg/mL;较低浓度的Si-SPIO对细胞增殖活力没有显著影响.移植到小鼠脑内1周后可见Si-SPIO阳性细胞.结果可知,浓度为20μg/mL的Si-SPIO标记hAMCs可获得良好的标记效果,并且不影响细胞的增殖活力.

References

[1]  1 Kim J, Kang H M, Kim H, et al. Ex vivo characteristics of human amniotic membrane-derived stem cells. Clon Stem Cells, 2007, 9: 581—594
[2]  2 Bailo M, Soncini M, Vertua E, et al. Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation,
[3]  2004, 78: 1439—1448
[4]  3 Moon J H, Lee J R, Jee B C, et al. Successful vitrification of human amnion-derived mesenchymal stem cells. Hum Reprod, 2008, 23: 1760—
[5]  1770
[6]  4 蔡哲, 周忠蜀, 向青, 等. 人羊膜间充质细胞的神经生物学特性及其治疗帕金森模型小鼠的实验研究. 中国康复理论与实践, 2010,
[7]  16: 318—321
[8]  5 Banas R A, Trumpower C, Bentlejewski C, et al. Immunogenicity and immunomodulatory effects of amnion-derived multipotent progenitor
[9]  cells. Hum Immunol, 2008, 69: 321—328
[10]  6 Neri M, Maderna C, Cavazzin C, et al. Efficient in vitro labeling of human neural precursor cells with superparamagnetic iron oxide
[11]  particles: relevance for in vivo cell tracking. Stem Cells, 2008, 26: 505—516
[12]  7 Bulte J W, Douglas T, Witwer B, et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat
[13]  Biotechnol, 2001, 19: 1141—1147
[14]  8 So P W, Kalber T, Hunt D, et al. Efficient and rapid labeling of transplanted cell populations with superparamagnetic iron oxide
[15]  nanoparticles using cell surface chemical biotinylation for in vivo monitoring by MRI. Cell Transplant, 2010, 19: 419—429
[16]  9 van Tiel S T, Wielopolski P A, Houston G C, et al. Variations in labeling protocol influence incorporation, distribution and retention of iron
[17]  oxide nanoparticles into human umbilical vein endothelial cells. Contrast Media Mol Imag, 2010, 5: 247—257
[18]  10 Kim Y K, Kim C S, Han Y M, et al. Comparison of gadoxetic acid-enhanced MRI and superparamagnetic iron oxide-enhanced MRI for the
[19]  detection of hepatocellular carcinoma. Clin Radiol, 2010, 65: 358—365
[20]  11 Taratula O, Garbuzenko O, Savla R, et al. Multifunctional nanomedicine platform for cancer specific delivery of siRNA by
[21]  superparamagnetic iron oxide nanoparticles-dendrimer complexes. Curr Drug Deliv, 2010, 65: 358—365
[22]  12 Himmelreich U, Dresselaers T. Cell labeling and tracking for experimental models using magnetic resonance imaging. Methods, 2009, 48:
[23]  112—124
[24]  13 Wang H H, Wang Y X, Leung K C, et al. Durable mesenchymal stem cell labelling by using polyhedral superparamagnetic iron oxide
[25]  nanoparticles. Chemistry, 2009, 15: 12417—12425
[26]  28 蔡金华, 冯敢生, 刘官信, 等. 不同浓度菲立磁对大鼠间充质干细胞标记效率和细胞活力的影响. 临床放射学杂志, 2007, 26: 190—
[27]  193
[28]  14 Corot C, Robert P, Idee J M, et al. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev, 2006,
[29]  58: 1471—1504
[30]  15 Wang Y X, Hussain S M, Krestin G P. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in
[31]  MR imaging. Eur Radiol, 2001, 11: 2319—2331
[32]  16 Wang Y X, Wang H H, Au D W, et al. Pitfalls in employing superparamagnetic iron oxide particles for stem cell labelling and in vivo MRI
[33]  tracking. Br J Radiol, 2008, 81: 987—988
[34]  17 Wang Y X, Leung K C, Cheung W H, et al. Low-intensity pulsed ultrasound increases cellular uptake of superparamagnetic iron oxide
[35]  nanomaterial: results from human osteosarcoma cell line U2OS. J Magn Reson Imaging, 2010, 31: 1508—1513
[36]  18 Frank J A, Miller B R, Arbab A S, et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron
[37]  oxides and transfection agents. Radiology, 2003, 228: 480—487
[38]  19 Arbab A S, Bashaw L A, Miller B R, et al. Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic
[39]  resonance imaging after cell transplantation: methods and techniques. Transplantation, 2003, 76: 1123—1130
[40]  20 Arbab A S, Yocum G T, Wilson L B, et al. Comparison of transfection agents in forming complexes with ferumoxides, cell labeling
[41]  efficiency, and cellular viability. Mol Imaging, 2004, 3: 24—32
[42]  21 Bulte J W, Kraitchman D L, Mackay A M, et al. Chondrogenic differentiation of mesenchymal stem cells is inhibited after magnetic
[43]  labeling with ferumoxides. Blood, 2004, 104: 3410—3412; author reply 3412—3413
[44]  22 Arbab A S, Liu W, Frank J A. Cellular magnetic resonance imaging: current status and future prospects. Expert Rev Med Devices, 2006, 3:
[45]  427—439
[46]  23 Yang J X, Tang W L, Wang X X. Superparamagnetic iron oxide nanoparticles may affect endothelial progenitor cell migration ability and
[47]  adhesion capacity. Cytotherapy, 2010, 12: 251—259
[48]  24 王爽, 谢鹏, 牟君, 等. Ferumoxides 标记神经干细胞及其对增殖分化的影响. 重庆医科大学学报, 2005, 30: 321—324
[49]  25 李晶, 牛勃, 张辉, 等. 磁标记骨髓间充质干细胞的实验研究. 中国药物与临床, 2009, 9: 119—121
[50]  26 Omidkhoda A, Mozdarani H, Movasaghpoor A, et al. Study of apoptosis in labeled mesenchymal stem cells with superparamagnetic iron
[51]  oxide using neutral comet assay. Toxicol In Vitro, 2007, 21: 1191—1196
[52]  27 Hoehn M, Kustermann E, Blunk J, et al. Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance
[53]  imaging investigation of experimental stroke in rat. Proc Natl Acad Sci USA, 2002, 99: 16267—16272

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133