全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

玉米高效吸收氮素的理想根构型

, PP. 1112-1116

Keywords: 玉米,氮效率,根系构型,硝态氮,根际

Full-Text   Cite this paper   Add to My Lib

Abstract:

氮肥投入是保证世界粮食总产量不断增加的重要因素.如何在高投入集约化生产条件下,提高氮肥利用效率、减少氮肥损失及其带来的环境问题,是当前作物生产中面临的重要课题.高产高投入玉米生产体系中,硝酸盐淋失是氮肥损失的重要途径之一.本文论述了土壤硝态氮运移特点、玉米吸氮规律及土壤氮素有效性对根系生长的调节作用,提出了玉米氮高效理想根系构型.通过改良根系构型、增加深层土壤中根系分布,有可能减少氮素向深层的淋失,从而提高氮肥利用率,同步实现玉米高产与氮高效利用.

References

[1]  19 Liao H, Yan X, Rubio G, et al. Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean. Funct
[2]  Plant Biol, 2004, 31: 959—970
[3]  20 赵静, 付家兵, 廖红, 等. 大豆磷效率应用核心种质的根构型性状评价. 科学通报, 2004, 49: 1249—1257
[4]  21 Zhu J M, Kaeppler S M, Lynch J P. Topsoil foraging and phosphorus acquisition efficiency in maize (Zea mays). Funct Plant Biol, 2005, 32:
[5]  749—762
[6]  22 Stevenson F J. Organic forms of soil nitrogen. In: Stevenson F J, ed. Nitrogen in Agricultural Soils. Madison: American Society of
[7]  Agronomy Inc, 1982. 67—122
[8]  23 Legg J O, Meisinder J. Soil nitrogen budgets. In: Stevenson F J, ed. Nitrogen in Agricultural Soils. Madison: American Society of
[9]  Agronomy Inc, 1982. 503—507
[10]  24 Barber S A. Soil Nutrient Bioavailability: A Mechanistic Approach. New York: John Wiley and Sons Inc, 1995
[11]  25 刘光栋, 吴文良. 桓台县高产农田土壤硝态氮淋失动态研究. 中国生态农业学报, 2002, 10: 71—74
[12]  26 袁新民, 杨学云, 同延安, 等. 不同施氮量对土壤NO3
[13]  --N 累积的影响. 干早地区农业研究, 2001, 19: 8—13,39
[14]  27 王西娜, 王朝辉, 李生秀. 施氮量对夏季玉米产量及土壤水氮动态的影响. 生态学报, 2007, 27: 197—204
[15]  28 巨晓棠, 刘学军, 张丽娟. 华北平原小麦-玉米轮作体系中的氮素循环与环境效应. 见: 朱兆良, 张福锁, 著. 主要农田生态系统氮素
[16]  行为与氮肥高效利用的基础研究. 北京: 科学出版社, 2010. 55—106
[17]  29 郭大应, 冯艳. 灌溉土壤硝态氮运移与土壤湿度的关系. 灌溉排水, 2001, 20: 66—68,72
[18]  30 高强. 土壤剖面不同位置累积硝态氮的作物有效性及去向. 博士学位论文. 北京: 中国农业大学, 2003
[19]  31 周顺利. 高产条件下冬小麦、夏玉米氮营养特性的基因型差异及氮肥推荐. 博士学位论文. 北京: 中国农业大学, 2000
[20]  32 van Vuuren M M I, Robinson D, Griffiths B S. Nutrient inflow and root proliferation during the exploitation of a temporally and spatially
[21]  discrete source of nitrogen in soil. Plant Soil, 1996, 178: 185—192
[22]  33 刘建安, 米国华, 张福锁.玉米基因型与土壤氮素表观平衡. 生态农业研究, 2000, 8: 38—41
[23]  34 张丽娟, 巨晓棠, 高强, 等. 玉米对土壤深层标记硝态氮的利用. 植物营养与肥料学报, 2004, 10: 455—461
[24]  35 宋海星, 李生秀. 根系的吸收作用及土壤水分对硝态氮、铵态氮分布的影响. 中国农业科学, 2005, 38: 96—101
[25]  36 王艳, 米国华, 陈范骏, 等. 玉米氮素吸收的基因型差异及其与根系形态的相关性. 生态学报, 2003, 23: 297—302
[26]  37 Tian Q Y, Chen F J, Zhang F S, et al. Genotypic difference in nitrogen acquisition ability in maize plants is related to the coordination of
[27]  leaf and root growth. J Plant Nutr, 2006, 29: 317—330
[28]  38 Tian Q Y, Chen F J, Liu J X, et al. Inhibition of maize root growth by high nitrate supply is correlated to reduced IAA levels in roots. J Plant
[29]  Physiol, 2008, 165: 942—951
[30]  39 Granato T C, Raper C D. Proliferation of maize (Zea mays L.) roots in response to localized supply of nitrate. J Exp Bot, 1989, 40: 263—
[31]  275
[32]  40 Sattelmacher B, Thoms K. Morphology and physiology of the seminal root system of young maize (Zea mays L.) plants as influenced by a
[33]  locally restricted nitrate supply. Zeitschrift für Pflanzenern?hrung und Bodenkunde, 1995, 158: 493—497
[34]  41 郭亚芬, 米国华, 陈范骏, 等. 硝酸盐供应对玉米侧根生长的影响. 植物生理与分子生物学学报, 2005, 31: 90—96
[35]  42 Hodge A. The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol, 2004, 162: 9—24
[36]  43 郭亚芬, 米国华, 陈范骏, 等. 局部供应硝酸盐诱导玉米侧根生长的基因型差异. 植物营养与肥料学报, 2005, 11: 155—159
[37]  44 巨晓棠, 刘学军, 潘家荣, 等. 华北平原冬小麦/夏玉米轮作体系氮素去向. 见: 李振声, 主编. 挖掘生物高效利用土壤养分潜力, 保
[38]  持土壤环境良性循环. 北京: 中国农业大学出版社, 2004. 250—292
[39]  45 Robert P, Durieux R P, Kamprath E J, et al. Root distribution of corn: the effect of nitrogen fertilization. Agron J, 1994, 86: 958—962
[40]  46 王启现, 王璞, 杨相勇, 等. 不同施氮时期对玉米根系分布及其活性的影响. 中国农业科学, 2003, 36: 1469—1475
[41]  47 孙庆泉, 胡昌浩, 董树亭, 等. 我国不同年代玉米品种生育全程根系特性演化的研究. 作物学报, 2003, 29: 641—645
[42]  48 Fitter A H. Characteristics and functions of root systems. In: Waisel Y, Eshel A, Kafkafi U, eds. Plant Roots: The Hidden half. New York :
[43]  Marcel Dekker Inc, 1991, 3—25
[44]  49 Sinclair T R, Vadez V. Physiological traits for crop yield improvement in low N and P environments. Plant Soil, 2002, 245: 1—151
[45]  50 Robinson D. Root proliferation, nitrate inflow and their carbon costs during nitrogen capture by competing plants in patchy soil. Plant Soil,
[46]  2001, 232: 41—50
[47]  51 Wiesler F, Horst W J. Differences between maize cultivars in field formation, nitrogen uptake and associated depletion of soil nitrate. J
[48]  Agron Crop Sci, 1992, 168: 226—237
[49]  172—177
[50]  52 Wiesler F, Horst W J. Differences among maize cultivars in the utilization of soil nitrate and the related losses of nitrate through leaching.
[51]  Plant Soil, 1993, 151: 193—203
[52]  53 Wiesler F, Horst W J. Root growth and nitrate utilization of maize cultivars under field conditions. Plant Soil, 1994, 163: 267—277
[53]  54 春亮, 陈范骏, 张福锁, 等. 不同氮效率玉米杂交种的根系生长、氮素吸收与产量形成. 植物营养与肥料学报, 2005, 11: 615—619
[54]  55 米国华, 陈范骏, 春亮, 等. 玉米氮高效品种的生物学特征. 植物营养与肥料学报, 2007, 13: 155—159
[55]  56 Liu J X, Chen F J, Olokhnuud C, et al. Root size and nitrogen-uptake activity in two maize (Zea mays L.) inbred lines differing in
[56]  nitrogen-use efficiency. J Plant Nutr Soil Sc, 2009, 172: 230—236
[57]  57 Gallais A, Coque M, Quilléré I, et al. Modeling postsilking nitrogen fluxes in maize (Zea mays) using 15N-labelling field experiments. New
[58]  Phytol, 2006, 172: 696—707
[59]  58 Gallais A, Coque M, Gouis J L, et al. Estimating proportions of nitrogen remobilization and of postsilking nitrogen uptake allocated to
[60]  maize kernels by nitrogen-15labeling. Crop Sci, 2007, 47: 685—691
[61]  59 Hochholdinger F, Tuberosa T. Genetic and genomic dissection of maize root development and architecture. Curr Opin Plant Biol, 2009, 12:
[62]  60 Landi P, Sanguineti M C, Liu C, et al. Root-ABA1 QTL affects root lodging, grain yield, and other agronomic traits in maize grown under
[63]  well-watered and water-stressed conditions. J Exp Bot, 2007, 58: 319—326
[64]  1 Mann C C. Crop scientists seek a new revolution. Science, 1999, 283: 310—314
[65]  2 London J G. Nitrogen study fertilizes fears of pollution. Nature, 2005, 433: 791
[66]  3 Tilman D, Cassman K G, Matson P A, et al. Agricultural sustainability and intensive production practices. Nature, 2002, 418: 671—678
[67]  4 Russell W A. Genetic improvement of maize yields. Adv Agron, 1991, 46: 245—298
[68]  5 Duvick D N. Genetic contributions to advances in yield in U.S. maize. Maydica, 1992, 37: 69—79
[69]  6 Tollenaar M, Lee E A. Yield potential, yield stability and stress tolerance in maize. Field Crop Res, 2002, 75: 161—169
[70]  7 Tollenaar M, Lee E A. Dissection of physiological processes underlying grain yield in maize by examining genetic improvement and
[71]  heterosis. Maydica, 2006, 51: 399—408
[72]  8 Dwyer L M, Tollenaar M. Genetic improvement in photosynthetic response of hybrid maize cultivars, 1959 to 1988. Can J Plant Sci, 1989,
[73]  69: 81—91
[74]  9 Duvick D N, Smith J S C, Cooper M. Long-term selection in a commercial hybrid maize breeding program. In: Janick J, ed. Plant Breeding
[75]  reviews. New York: John Wiley & Sons, 2004. 109—151
[76]  10 丁莉. 玉米品种更替中产量增长与光合效率提高的生理机制. 博士学位论文. 北京: 中国科学院植物研究所, 2005
[77]  11 谢振江, 李明顺, 徐家舜, 等. 遗传改良对中国华北不同年代玉米单交种产量的贡献. 中国农业科学, 2009, 42: 781—789
[78]  12 陈国平, 王荣焕, 赵久然. 玉米高产田的产量结构模式及关键因素分析. 玉米科学, 2009,17: 89—93
[79]  13 王空军. 玉米不同产量潜力基因型根系生理特性与地上部关系研究. 博士学位论文. 泰安: 山东农业大学, 2000
[80]  14 Lynch J P. Root architecture and plant productivity. Plant Physiol, 1995, 109: 7—13
[81]  15 King J, Gay A, Sylvester-Bradley R, et al. Modelling cereal root systems for water and nitrogen capture: Towards an economic optimum.
[82]  Ann Bot, 2003, 91: 383—390
[83]  16 Hammer G L, Dong Z, McLean G, et al. Can changes in canopy and/or root system architecture explain historical maize yield trends in the
[84]  U.S. corn belt? Crop Sci, 2009, 49: 299—312
[85]  17 Lynch J P, Beebe S E. Adaptation of beans to low soil phosphorus availability. Hort Sci, 1995, 30: 1165—1171
[86]  18 Lynch J P, Brown K M. Topsoil foraging-an architectural adaptation to low phosphorus availability. Plant Soil, 2001, 237: 225—237

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133