OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
玉米高效吸收氮素的理想根构型
, PP. 1112-1116
Keywords: 玉米,氮效率,根系构型,硝态氮,根际
Abstract:
氮肥投入是保证世界粮食总产量不断增加的重要因素.如何在高投入集约化生产条件下,提高氮肥利用效率、减少氮肥损失及其带来的环境问题,是当前作物生产中面临的重要课题.高产高投入玉米生产体系中,硝酸盐淋失是氮肥损失的重要途径之一.本文论述了土壤硝态氮运移特点、玉米吸氮规律及土壤氮素有效性对根系生长的调节作用,提出了玉米氮高效理想根系构型.通过改良根系构型、增加深层土壤中根系分布,有可能减少氮素向深层的淋失,从而提高氮肥利用率,同步实现玉米高产与氮高效利用.
References
[1] | 19 Liao H, Yan X, Rubio G, et al. Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean. Funct
|
[2] | Plant Biol, 2004, 31: 959—970
|
[3] | 20 赵静, 付家兵, 廖红, 等. 大豆磷效率应用核心种质的根构型性状评价. 科学通报, 2004, 49: 1249—1257
|
[4] | 21 Zhu J M, Kaeppler S M, Lynch J P. Topsoil foraging and phosphorus acquisition efficiency in maize (Zea mays). Funct Plant Biol, 2005, 32:
|
[5] | 749—762
|
[6] | 22 Stevenson F J. Organic forms of soil nitrogen. In: Stevenson F J, ed. Nitrogen in Agricultural Soils. Madison: American Society of
|
[7] | Agronomy Inc, 1982. 67—122
|
[8] | 23 Legg J O, Meisinder J. Soil nitrogen budgets. In: Stevenson F J, ed. Nitrogen in Agricultural Soils. Madison: American Society of
|
[9] | Agronomy Inc, 1982. 503—507
|
[10] | 24 Barber S A. Soil Nutrient Bioavailability: A Mechanistic Approach. New York: John Wiley and Sons Inc, 1995
|
[11] | 25 刘光栋, 吴文良. 桓台县高产农田土壤硝态氮淋失动态研究. 中国生态农业学报, 2002, 10: 71—74
|
[12] | 26 袁新民, 杨学云, 同延安, 等. 不同施氮量对土壤NO3
|
[13] | --N 累积的影响. 干早地区农业研究, 2001, 19: 8—13,39
|
[14] | 27 王西娜, 王朝辉, 李生秀. 施氮量对夏季玉米产量及土壤水氮动态的影响. 生态学报, 2007, 27: 197—204
|
[15] | 28 巨晓棠, 刘学军, 张丽娟. 华北平原小麦-玉米轮作体系中的氮素循环与环境效应. 见: 朱兆良, 张福锁, 著. 主要农田生态系统氮素
|
[16] | 行为与氮肥高效利用的基础研究. 北京: 科学出版社, 2010. 55—106
|
[17] | 29 郭大应, 冯艳. 灌溉土壤硝态氮运移与土壤湿度的关系. 灌溉排水, 2001, 20: 66—68,72
|
[18] | 30 高强. 土壤剖面不同位置累积硝态氮的作物有效性及去向. 博士学位论文. 北京: 中国农业大学, 2003
|
[19] | 31 周顺利. 高产条件下冬小麦、夏玉米氮营养特性的基因型差异及氮肥推荐. 博士学位论文. 北京: 中国农业大学, 2000
|
[20] | 32 van Vuuren M M I, Robinson D, Griffiths B S. Nutrient inflow and root proliferation during the exploitation of a temporally and spatially
|
[21] | discrete source of nitrogen in soil. Plant Soil, 1996, 178: 185—192
|
[22] | 33 刘建安, 米国华, 张福锁.玉米基因型与土壤氮素表观平衡. 生态农业研究, 2000, 8: 38—41
|
[23] | 34 张丽娟, 巨晓棠, 高强, 等. 玉米对土壤深层标记硝态氮的利用. 植物营养与肥料学报, 2004, 10: 455—461
|
[24] | 35 宋海星, 李生秀. 根系的吸收作用及土壤水分对硝态氮、铵态氮分布的影响. 中国农业科学, 2005, 38: 96—101
|
[25] | 36 王艳, 米国华, 陈范骏, 等. 玉米氮素吸收的基因型差异及其与根系形态的相关性. 生态学报, 2003, 23: 297—302
|
[26] | 37 Tian Q Y, Chen F J, Zhang F S, et al. Genotypic difference in nitrogen acquisition ability in maize plants is related to the coordination of
|
[27] | leaf and root growth. J Plant Nutr, 2006, 29: 317—330
|
[28] | 38 Tian Q Y, Chen F J, Liu J X, et al. Inhibition of maize root growth by high nitrate supply is correlated to reduced IAA levels in roots. J Plant
|
[29] | Physiol, 2008, 165: 942—951
|
[30] | 39 Granato T C, Raper C D. Proliferation of maize (Zea mays L.) roots in response to localized supply of nitrate. J Exp Bot, 1989, 40: 263—
|
[31] | 275
|
[32] | 40 Sattelmacher B, Thoms K. Morphology and physiology of the seminal root system of young maize (Zea mays L.) plants as influenced by a
|
[33] | locally restricted nitrate supply. Zeitschrift für Pflanzenern?hrung und Bodenkunde, 1995, 158: 493—497
|
[34] | 41 郭亚芬, 米国华, 陈范骏, 等. 硝酸盐供应对玉米侧根生长的影响. 植物生理与分子生物学学报, 2005, 31: 90—96
|
[35] | 42 Hodge A. The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol, 2004, 162: 9—24
|
[36] | 43 郭亚芬, 米国华, 陈范骏, 等. 局部供应硝酸盐诱导玉米侧根生长的基因型差异. 植物营养与肥料学报, 2005, 11: 155—159
|
[37] | 44 巨晓棠, 刘学军, 潘家荣, 等. 华北平原冬小麦/夏玉米轮作体系氮素去向. 见: 李振声, 主编. 挖掘生物高效利用土壤养分潜力, 保
|
[38] | 持土壤环境良性循环. 北京: 中国农业大学出版社, 2004. 250—292
|
[39] | 45 Robert P, Durieux R P, Kamprath E J, et al. Root distribution of corn: the effect of nitrogen fertilization. Agron J, 1994, 86: 958—962
|
[40] | 46 王启现, 王璞, 杨相勇, 等. 不同施氮时期对玉米根系分布及其活性的影响. 中国农业科学, 2003, 36: 1469—1475
|
[41] | 47 孙庆泉, 胡昌浩, 董树亭, 等. 我国不同年代玉米品种生育全程根系特性演化的研究. 作物学报, 2003, 29: 641—645
|
[42] | 48 Fitter A H. Characteristics and functions of root systems. In: Waisel Y, Eshel A, Kafkafi U, eds. Plant Roots: The Hidden half. New York :
|
[43] | Marcel Dekker Inc, 1991, 3—25
|
[44] | 49 Sinclair T R, Vadez V. Physiological traits for crop yield improvement in low N and P environments. Plant Soil, 2002, 245: 1—151
|
[45] | 50 Robinson D. Root proliferation, nitrate inflow and their carbon costs during nitrogen capture by competing plants in patchy soil. Plant Soil,
|
[46] | 2001, 232: 41—50
|
[47] | 51 Wiesler F, Horst W J. Differences between maize cultivars in field formation, nitrogen uptake and associated depletion of soil nitrate. J
|
[48] | Agron Crop Sci, 1992, 168: 226—237
|
[49] | 172—177
|
[50] | 52 Wiesler F, Horst W J. Differences among maize cultivars in the utilization of soil nitrate and the related losses of nitrate through leaching.
|
[51] | Plant Soil, 1993, 151: 193—203
|
[52] | 53 Wiesler F, Horst W J. Root growth and nitrate utilization of maize cultivars under field conditions. Plant Soil, 1994, 163: 267—277
|
[53] | 54 春亮, 陈范骏, 张福锁, 等. 不同氮效率玉米杂交种的根系生长、氮素吸收与产量形成. 植物营养与肥料学报, 2005, 11: 615—619
|
[54] | 55 米国华, 陈范骏, 春亮, 等. 玉米氮高效品种的生物学特征. 植物营养与肥料学报, 2007, 13: 155—159
|
[55] | 56 Liu J X, Chen F J, Olokhnuud C, et al. Root size and nitrogen-uptake activity in two maize (Zea mays L.) inbred lines differing in
|
[56] | nitrogen-use efficiency. J Plant Nutr Soil Sc, 2009, 172: 230—236
|
[57] | 57 Gallais A, Coque M, Quilléré I, et al. Modeling postsilking nitrogen fluxes in maize (Zea mays) using 15N-labelling field experiments. New
|
[58] | Phytol, 2006, 172: 696—707
|
[59] | 58 Gallais A, Coque M, Gouis J L, et al. Estimating proportions of nitrogen remobilization and of postsilking nitrogen uptake allocated to
|
[60] | maize kernels by nitrogen-15labeling. Crop Sci, 2007, 47: 685—691
|
[61] | 59 Hochholdinger F, Tuberosa T. Genetic and genomic dissection of maize root development and architecture. Curr Opin Plant Biol, 2009, 12:
|
[62] | 60 Landi P, Sanguineti M C, Liu C, et al. Root-ABA1 QTL affects root lodging, grain yield, and other agronomic traits in maize grown under
|
[63] | well-watered and water-stressed conditions. J Exp Bot, 2007, 58: 319—326
|
[64] | 1 Mann C C. Crop scientists seek a new revolution. Science, 1999, 283: 310—314
|
[65] | 2 London J G. Nitrogen study fertilizes fears of pollution. Nature, 2005, 433: 791
|
[66] | 3 Tilman D, Cassman K G, Matson P A, et al. Agricultural sustainability and intensive production practices. Nature, 2002, 418: 671—678
|
[67] | 4 Russell W A. Genetic improvement of maize yields. Adv Agron, 1991, 46: 245—298
|
[68] | 5 Duvick D N. Genetic contributions to advances in yield in U.S. maize. Maydica, 1992, 37: 69—79
|
[69] | 6 Tollenaar M, Lee E A. Yield potential, yield stability and stress tolerance in maize. Field Crop Res, 2002, 75: 161—169
|
[70] | 7 Tollenaar M, Lee E A. Dissection of physiological processes underlying grain yield in maize by examining genetic improvement and
|
[71] | heterosis. Maydica, 2006, 51: 399—408
|
[72] | 8 Dwyer L M, Tollenaar M. Genetic improvement in photosynthetic response of hybrid maize cultivars, 1959 to 1988. Can J Plant Sci, 1989,
|
[73] | 69: 81—91
|
[74] | 9 Duvick D N, Smith J S C, Cooper M. Long-term selection in a commercial hybrid maize breeding program. In: Janick J, ed. Plant Breeding
|
[75] | reviews. New York: John Wiley & Sons, 2004. 109—151
|
[76] | 10 丁莉. 玉米品种更替中产量增长与光合效率提高的生理机制. 博士学位论文. 北京: 中国科学院植物研究所, 2005
|
[77] | 11 谢振江, 李明顺, 徐家舜, 等. 遗传改良对中国华北不同年代玉米单交种产量的贡献. 中国农业科学, 2009, 42: 781—789
|
[78] | 12 陈国平, 王荣焕, 赵久然. 玉米高产田的产量结构模式及关键因素分析. 玉米科学, 2009,17: 89—93
|
[79] | 13 王空军. 玉米不同产量潜力基因型根系生理特性与地上部关系研究. 博士学位论文. 泰安: 山东农业大学, 2000
|
[80] | 14 Lynch J P. Root architecture and plant productivity. Plant Physiol, 1995, 109: 7—13
|
[81] | 15 King J, Gay A, Sylvester-Bradley R, et al. Modelling cereal root systems for water and nitrogen capture: Towards an economic optimum.
|
[82] | Ann Bot, 2003, 91: 383—390
|
[83] | 16 Hammer G L, Dong Z, McLean G, et al. Can changes in canopy and/or root system architecture explain historical maize yield trends in the
|
[84] | U.S. corn belt? Crop Sci, 2009, 49: 299—312
|
[85] | 17 Lynch J P, Beebe S E. Adaptation of beans to low soil phosphorus availability. Hort Sci, 1995, 30: 1165—1171
|
[86] | 18 Lynch J P, Brown K M. Topsoil foraging-an architectural adaptation to low phosphorus availability. Plant Soil, 2001, 237: 225—237
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|