OALib Journal期刊
ISSN: 2333-9721
费用:99美元
位点特异性重组系统的机理和应用
, PP. 1090-1111
Keywords: 位点特异性重组 ,酪氨酸重组酶 ,丝氨酸重组酶 ,整合酶
Abstract:
位点特异性重组酶识别特定的位点形成联会复合体,并发生DNA链的切割与交换,实现靶位点之间的整合、切离或倒位.这一过程由位于重组酶催化活性中心的酪氨酸或丝氨酸向DNA磷酸骨架发起攻击,形成共价中间体,不需要高能量辅助因子的参与.由于位点特异性重组系统具有高效精确的优点,在基因工程领域得到了广泛的应用.本文从识别位点的性质、重组酶的组成与结构及催化反应的特点三方面对位点特异性重组的机理进行了全面的阐述,并对当前重组酶的应用研究之现状、热点及存在的问题作了深入剖析,并讨论了未来的发展趋势.
References
[1] 8 Colloms S D, Sykora P, Szatmari G, et al. Recombination at ColE1 cer requires the Escherichia coli xerC gene product, a member of the
[2] λ-integrase family of site-specific recombinases. J Bacteriol, 1990, 172: 6973—6980
[3] 9 Abremski K, Hoess R. Bacteriophage P1 site-specific recombination: purification and properties of the Cre recombinase protein. J Biol
[4] Chem, 1984, 259: 1509—1514
[5] 10 Baum J A. Tn5401, a new class II transposable element from Bacillus thuringiensis. J Bacteriol, 1994, 176: 2835—2845
[6] 11 Mahillon J, Lereclus D. Structural and functional-analysis of Tn4430-identification of an integrase-like protein involved in the
[7] co-integrate-resolution process. EMBO J, 1988, 7: 1515—1526
[8] 12 Bastos M D D, Murphy E. Transposon Tn554 encodes three products required for transposition. EMBO J, 1988, 7: 2935—2941
[9] 13 Poyartsalmeron C, Trieucuot P, Carlier C, et al. Molecular characterization of two proteins involved in the excision of the conjugative
[10] transposon Tn1545: homologies with other site-specific recombinases. EMBO J, 1989, 8: 2425—2433
[11] 14 Su Y A, Clewell D B. Characterization of the left 4 Kb of conjugative transposon Tn916: determinants involved in excision. Plasmid, 1993,
[12] Sci USA, 1995, 92: 791—795
[13] 16 Klemm P. Two regulatory fim Genes, fimB and fimE, control the phase variation of type I fimbriae in Escherichia coli. EMBO J, 1986, 5:
[14] 1389—1393
[15] 17 Hartley J L, Donelson J E. Nucleotide-sequence of the yeast plasmid. Nature, 1980, 286: 860—865
[16] 18 Massad G, Mobley H L T. Genetic organization and complete sequence of the Proteus mirabilis pmf fimbrial operon. Gene, 1994, 150: 101—
[17] 104
[18] 19 Li X, Lockatell C V, Johnson D E, et al. Identification of MrpI as the sole recombinase that regulates the phase variation of MR/P fimbria, a
[19] bladder colonization factor of uropathogenic Proteus mirabilis. Mol Microbiol, 2002, 45: 865—874
[20] 20 Li W K, Kamtekar S, Xiong Y, et al. Structure of a synaptic γδ resolvase tetramer covalently linked to two cleaved DNAs. Science, 2005,
[21] 309: 1210—1215
[22] 21 Yang W, Steitz T A. Crystal-structure of the site-specific secombinase γδ resolvase complexed with a 34-bp cleavage site. Cell, 1995, 82:
[23] 193—207
[24] 22 Olorunniji F J, He J Y, Wenwieser S V C T, et al. Synapsis and catalysis by activated Tn3 resolvase mutants. Nucleic Acids Res, 2008, 36:
[25] 7181—7191
[26] 23 Nollmann M, Byron O, Stark W M. Behavior of Tn3 resolvase in solution and its interaction with res. Biophys J, 2005, 89: 1920—1931
[27] 24 Arnold P H, Blake D G, Grindley N D F, et al. Mutants of Tn3 resolvase which do not require accessory binding sites for recombination
[28] activity. EMBO J, 1999, 18: 1407—1414
[29] 25 Rowland S J, Boocock M R, McPherson A L, et al. Regulatory mutations in Sin recombinase support a structure-based model of the
[30] synaptosome. Mol Microbiol, 2009, 74: 282—298
[31] 26 Rowland S J, Stark W M, Boocock M R. Sin recombinase from Staphylococcus aureus: synaptic complex architecture and transposon
[32] targeting. Mol Microbiol, 2002, 44: 607—619
[33] 27 Dhar G, Heiss J K, Johnson R C. Mechanical constraints on Hin subunit rotation imposed by the Fis/enhancer system and DNA supercoiling
[34] during site-specific recombination. Mol Cell, 2009, 34: 746—759
[35] 28 Mertens G, Klippel A, Fuss H, et al. Site-specific recombination in bacteriophage Mu: characterization of binding-sites for the DNA
[36] invertase Gin. EMBO J, 1988, 7: 1219—1227
[37] 29 Klippel A, Mertens G, Patschinsky T, et al. The DNA invertase Gin of phage Mu: formation of a covalent complex with DNA via a
[38] phosphoserine at amino-acid position-9. EMBO J, 1988, 7: 1229—1237
[39] 30 Mertens G, Fuss H, Kahmann R. Purification and properties of the DNA invertase Gin encoded by bacteriophage Mu. J Biol Chem, 1986,
[40] 261: 5668—5672
[41] 31 Morita K, Yamamoto T, Fusada N, et al. In vitro characterization of the site-specific recombination system based on actinophage TG1
[42] integrase. Mol Genet Genomics, 2009, 282: 607—616
[43] 32 Zhang L, Ou X J, Zhao G P, et al. Highly efficient in vitro site-specific recombination system based on Streptomyces phage φBT1 integrase.
[44] J Bacteriol, 2008, 190: 6392—6397
[45] 33 Thorpe H M, Smith M C M. In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase
[46] family. Proc Natl Acad Sci USA, 1998, 95: 5505—5510
[47] 34 Olivares E C, Hollis R P, Calos M P. Phage R4 integrase mediates site-specific integration in human cells. Gene, 2001, 278: 167—176
[48] 35 Bibb L A, Hancox M I, Hatfull G F. Integration and excision by the large serine recombinase φRv1 integrase. Mol Microbiol, 2005, 55: 1896—
[49] 1910
[50] 36 Kim A I, Ghosh P, Aaron M A, et al. Mycobacteriophage Bxb1 integrates into the Mycobacterium smegmatis groEL1 gene. Mol Microbiol,
[51] 2003, 50: 463—473
[52] 37 Breuner A, Brondsted L, Hammer K. Novel organization of genes involved in prophage excision identified in the temperate lactococcal
[53] bacteriophage TP901-1. J Bacteriol, 1999, 181: 7291—7297
[54] 38 Park M O, Lim K H, Kim T H, et al. Characterization of site-specific recombination by the integrase MJ1 from enterococcal bacteriophage
[55] φFC1. J Microbiol Biotechnol, 2007, 17: 342—347
[56] 39 Lyras D, Adams V, Lucet I, et al. The large resolvase TnpX is the only transposon-encoded protein required for transposition of the
[57] Tn4451/3 family of integrative mobilizable elements. Mol Microbiol, 2004, 51: 1787—1800
[58] 40 Boocock M R, Zhu X W, Grindley N D F. Catalytic residues of γδ resolvase act in cis. EMBO J, 1995, 14: 5129—5140
[59] 41 Abremski K, Gottesman S. Site-specific recombination: Xis-independent excisive recombination of bacteriophage λ. J Mol Biol, 1981, 153:
[60] 67—78
[61] 42 Groth A C, Calos M P. Phage integrases: biology and applications. J Mol Biol, 2004, 335: 667—678
[62] 43 Smith M C M, Thorpe H M. Diversity in the serine recombinases. Mol Microbiol, 2002, 44: 299—307
[63] Acids Res, 2009, 37: 4743—4756
[64] 60 Moskowitz I P G, Heichman K A, Johnson R C. Alignment of recombination sites in Hin-mediated site-specific DNA recombination. Gene
[65] Dev, 1991, 5: 1635—1645
[66] 61 Hughes K T, Youderian P, Simon M I. Phase variation in Salmonella: analysis of Hin recombinase and hix recombination site interaction in
[67] vivo. Gene Dev, 1988, 2: 937—948
[68] 62 Johnson R C, Simon M I. Hin-mediated site-specific recombination requires two 26-bp recombination sites and a 60-bp recombinational
[69] enhancer. Cell, 1985, 41: 781—791
[70] 63 Gregory M A, Till R, Smith M C M. Integration site for Streptomyces phage φBT1 and development of site-specific integrating vectors. J
[71] Bacteriol, 2003, 185: 5320—5323
[72] 64 Lutz K A, Corneille S, Azhagiri A K, et al. A novel approach to plastid transformation utilizes the φC31 phage integrase. Plant J, 2004, 37:
[73] 906—913
[74] 65 Forterre P, Gribaldo S, Gadelle D, et al. Origin and evolution of DNA topoisomerases. Biochimie, 2007, 89: 427—446
[75] 66 Lim H M, Simon M I. The role of negative supercoiling in Hin-mediated site-specific recombination. J Biol Chem, 1992, 267: 11176—
[76] 11182
[77] 1 Grindley N D F, Whiteson K L, Rice P A. Mechanisms of site-specific recombination. Annu Rev Biochem, 2006, 75: 567—605
[78] 2 Sadofsky M J. The RAG proteins in V(D)J recombination: more than just a nuclease. Nucleic Acids Res, 2001, 29: 1399—1409
[79] 3 Lieber M R. Site-specific recombination in the immune system. FASEB J, 1991, 5: 2934—2944
[80] 4 Haugen P, Simon D M, Bhattacharya D. The natural history of group I introns. Trends Genet, 2005, 21: 111—119
[81] 5 Hsu P L, Ross W, Landy A. The λ-phage att site: functional limits and interaction with Int protein. Nature, 1980, 285: 85—91
[82] 6 Leong J M, Nunesduby S, Lesser C F, et al. The φ80 and P22 attachment sites: primary structure and interaction with Escherichia coli
[83] integration host factor. J Biol Chem, 1985, 260: 4468—4477
[84] 7 Lewis J A, Hatfull G F. Control of directionality in L5 integrase-mediated site-specific recombination. J Mol Biol, 2003, 326: 805—821
[85] 30: 234—250
[86] 15 Carrasco C D, Buettner J A, Golden J W. Programmed DNA rearrangement of a cyanobacterial hupl Gene in heterocysts. Proc Natl Acad
[87] 44 Echols H. Lysogeny: viral repression and site-specific recombination. Annu Rev Biochem, 1971, 40: 827—854
[88] 45 Biswas T, Aihara H, Radman-Livaja M, et al. A structural basis for allosteric control of DNA recombination by λ integrase. Nature, 2005,
[89] 435: 1059—1066
[90] 46 Landy A, Ross W. Viral integration and excision: structure of λ att sites. Science, 1977, 197: 1147—1160
[91] 47 Rajeev L, Malanowska K, Gardner J F. Challenging a paradigm: the role of DNA homology in tyrosine recombinase reactions. Microbiol
[92] Mol Biol R, 2009, 73: 300—309
[93] 48 Warren D, Laxmikanthan G, Landy A. A chimeric Cre recombinase with regulated directionality. Proc Natl Acad Sci USA, 2008, 105:
[94] 18278—18283
[95] 49 Bauer C E, Gardner J F, Gumport R I. Extent of sequence homology required for bacteriophage λ site-specific recombination. J Mol Biol,
[96] 1985, 181: 187—197
[97] 50 Weisberg R A, Enquist L W, Foeller C, et al. Role for DNA homology in site-specific recombination: the isolation and characterization of a
[98] site affinity mutant of coliphage λ. J Mol Biol, 1983, 170: 319—342
[99] 51 Caparon M G, Scott J R. Excision and insertion of the conjugative transposon Tn916 involves a novel recombination mechanism. Cell, 1989,
[100] 59: 1027—1034
[101] 52 Ouaissi A, Vergnes B, Borges M, et al. Identification and molecular characterization of two novel Trypanosoma cruzi genes encoding
[102] polypeptides sharing sequence motifs found in proteins involved in RNA editing reactions. Gene, 2000, 253: 271—280
[103] 53 Malanowska K, Salyers A A, Gardner J F. Characterization of a conjugative transposon integrase, IntDOT. Mol Microbiol, 2006, 60: 1228—
[104] 1240
[105] 54 Cheng Q I, Paszkiet B J, Shoemaker N B, et al. Integration and excision of a bacteroides conjugative transposon, CTnDOT. J Bacteriol,
[106] 2000, 182: 4035—4043
[107] 55 Schmidt J W, Rajeev L, Salyers A A, et al. NBU1 integrase: evidence for an altered recombination mechanism. Mol Microbiol, 2006, 60: 152—
[108] 164
[109] 56 Bouvier M, Demarre G, Mazel D. Integron cassette insertion: a recombination process involving a folded single strand substrate. EMBO J,
[110] 2005, 24: 4356—4367
[111] 57 Val M E, Bouvier M, Campos J, et al. The single-stranded genome of phage CTX is the form used for integration into the genome of Vibrio cholerae. Mol Cell, 2005, 19: 559—566
[112] 58 Salvo J J, Grindley N D F. The γδ resolvase bends the res site into a recombinogenic complex. EMBO J, 1988, 7: 3609—3616
[113] 59 Dhar G, McLean M M, Heiss J K, et al. The Hin recombinase assembles a tetrameric protein swivel that exchanges DNA strands. Nucleic
[114] 67 Benjamin K R, Abola A P, Kanaar R, et al. Contributions of supercoiling to Tn3 resolvase and phage Mu Gin site-specific recombination. J
[115] Mol Biol, 1996, 256: 50—65
[116] 68 Trigueros S, Tran T, Sorto N, et al. mwr Xer site-specific recombination is hypersensitive to DNA supercoiling. Nucleic Acids Res, 2009,
[117] 37: 3580—3587
[118] 69 Zhang L, Wang L, Wang J, et al. DNA cleavage is independent of synapsis during Streptomyces phage φBT1 integrase-mediated
[119] site-specific recombination. J Mol Cell Biol, 2010, 2: 264—275
[120] 70 Ghosh P, Kim A I, Hatfull G F. The orientation of mycobacteriophage Bxb1 integration is solely dependent on the central dinucleotide of
[121] attP and attB. Mol Cell, 2003, 12: 1101—1111
[122] 71 Hartley J L, Temple G F, Brasch M A. DNA cloning using in vitro site-specific recombination. Genome Res, 2000, 10: 1788—1795
[123] 72 Chen Y, Narendra U, Iype L E, et al. Crystal structure of a Flp recombinase-Holliday junction complex: assembly of an active oligomer by
[124] helix swapping. Mol Cell, 2000, 6: 885—897
[125] 73 Guo F, Gopaul D N, VanDuyne G D. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature,
[126] 1997, 389: 40—46
[127] 74 Ghosh K, Guo F, Van Duyne G D. Synapsis of loxP sites by Cre recombinase. J Biol Chem, 2007, 282: 24004—24016
[128] 75 Craig N L, Nash H A. The Mechanism of phage λ site-specific recombination: site-specific breakage of DNA by Int topoisomerase. Cell,
[129] 1983, 35: 795—803
[130] 76 Graham J E, Sivanathan V, Sherratt D J, et al. FtsK translocation on DNA stops at XerCD-dif. Nucleic Acids Res, 2010, 38: 72—81
[131] 77 Lowe J, Ellonen A, Allen M D, et al. Molecular mechanism of sequence-directed DNA loading and translocation by FtsK. Mol Cell, 2008,
[132] 31: 498—509
[133] 78 Nollmann M, He J Y, Byron O, et al. Solution structure of the Tn3 resolvase-crossover site synaptic complex. Mol Cell, 2004, 16: 127—137
[134] 79 Mouw K W, Rowland S J, Gajjar M M, et al. Architecture of a serine recombinase-DNA regulatory complex. Mol Cell, 2008, 30: 145—155
[135] 80 Spaenydekking L, Vanhemert M, Vandeputte P, et al. Gin Invertase of bacteriophage Mu is a dimer in solution, with the domain for
[136] dimerization in the N-terminal part of the protein. Biochemistry-US, 1995, 34: 1779—1786
[137] 81 Yuan P, Gupta K, Van Duynel G D. Tetrameric structure of a serine integrase catalytic domain. Structure, 2008, 16: 1275—1286
[138] 82 Smith M C M, Brown W R A, McEwan A R, et al. Site-specific recombination by φC31 integrase and other large serine recombinases.
[139] Biochem Soc T, 2010, 38: 388—394
[140] 83 Gupta M, Till R, Smith M C M. Sequences in attB that affect the ability of the φC31 integrase to synapse and to activate DNA cleavage.
[141] Nucleic Acids Res, 2007, 35: 3407—3419
[142] 84 Ghosh P, Pannunzio N R, Hatfull G F. Synapsis in phage Bxb1 integration: selection mechanism for the correct pair of recombination sites.
[143] J Mol Biol, 2005, 349: 331—348
[144] 85 Richet E, Abcarian P, Nash H A. Synapsis of attachment sites during λ integrative recombination involves capture of a naked DNA by a
[145] protein-DNA complex. Cell, 1988, 52: 9—17
[146] 86 Grindley N D F, Lauth M R, Wells R G, et al. Transposon-mediated site-specific recombination: identification of three binding sites for
[147] resolvase at the res sites of gd and Tn3. Cell, 1982, 30: 19—27
[148] 87 Crisona N J, Kanaar R, Gonzalez T N, et al. Processive recombination by wild-type Gin and an enhancer-independent mutant: insight into
[149] the mechanisms of recombination selectivity and strand exchange. J Mol Biol, 1994, 243: 437—457
[150] 88 Kanaar R, Klippel A, Shekhtman E, et al. Processive recombination by the phage Mu Gin system: implications for the mechanisms of DNA
[151] strand exchange, DNA site alignment, and enhancer action. Cell, 1990, 62: 353—366
[152] 89 Smith M C A, Till R, Brady K, et al. Synapsis and DNA cleavage in φC31 integrase-mediated site-specific recombination. Nucleic Acids
[153] Res, 2004, 32: 2607—2617
[154] 90 Ghosh P, Wasil L R, Hatfull G F. Control of phage Bxb1 excision by a novel recombination directionality factor. PLoS Biol, 2006, 4: 964—
[155] 974
[156] 91 Ghosh P, Bibb L A, Hatfull G F. Two-step site selection for serine-integrase-mediated excision: DNA-directed integrase conformation and
[157] central dinucleotide proofreading. Proc Natl Acad Sci USA, 2008, 105: 3238—3243
[158] 92 Nunes-Duby S E, Kwon H J, Tirumalai R S, et al. Similarities and differences among one hundred and five members of the Int family of
[159] site-specific recombinases. Nucleic Acids Res, 1998, 26: 391—406
[160] 93 Gibb B, Gupta K, Ghosh K, et al. Requirements for catalysis in the Cre recombinase active site. Nucleic Acids Res, 2010, doi:
[161] 10.1093/nar/gkq384
[162] 94 Wang H M, Smith M C M, Mullany P. The conjugative transposon Tn5397 has a strong preference for integration into its clostridium
[163] difficile target site. J Bacteriol, 2006, 188: 4871—4878
[164] 95 Sato T, Harada K, Kobayasi Y. Analysis of suppressor mutations of spoIVCA mutations: occurrence of DNA rearrangement in the absence
[165] of a site-specific DNA recombinase SpoIVCA in Bacillus subtilis. J Bacteriol, 1996, 178: 3380—3383
[166] 96 Rowley P A, Smith M C M. Role of the N-terminal domain of φC31 integrase in attB-attP synapsis. J Bacteriol, 2008, 190: 6918—6921
[167] 97 Rowley P A, Smith M C A, Younger E, et al. A motif in the C-terminal domain of φC31 integrase controls the directionality of
[168] recombination. Nucleic Acids Res, 2008, 36: 3879—3891
[169] 98 Urnov F D, Miller J C, Lee Y L, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature,
[170] 2005, 435: 646—651
[171] 99 Lombardo A, Genovese P, Beausejour C M, et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective
[172] lentiviral vector delivery. Nat Biotechnol, 2007, 25: 1298—1306
[173] 100 Gordley R M, Smith J D, Graslund T, et al. Evolution of programmable zinc finger recombinases with activity in human cells. J Mol Biol,
[174] 2007, 367: 802—813
[175] 101 Metzger D, Clifford J, Chiba H, et al. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre
[176] recombinase. Proc Natl Acad Sci USA, 1995, 92: 6991—6995
[177] 102 Tannour-Louet M, Porteu A, Vaulont S, et al. A tamoxifen-inducible chimeric Cre recombinase specifically effective in the fetal and adult
[178] mouse liver. Hepatology, 2002, 35: 1072—1081
[179] 103 Imai T, Jiang M, Chambon P, et al. Impaired adipogenesis and lipolysis in the mouse upon selective ablation of the retinoid X receptor a
[180] mediated by a tamoxifen-inducible chimeric Cre recombinase (Cre-ERT2) in adipocytes. Pro Natl Acad Sci USA, 2001, 98: 224—228
[181] 104 Brocard J, Feil R, Chambon P, et al. A chimeric Cre recombinase inducible by synthetic, but not by natural ligands of the glucocorticoid
[182] receptor. Nucleic Acids Res, 1998, 26: 4086—4090
[183] 105 Urbanski W M, Condie B G. Textpresso site-specific recombinases: a text-mining server for the recombinase literature including Cre mice
[184] and conditional alleles. Genesis, 2009, 47: 842—846
[185] 106 Colwill K, Wells C D, Elder K, et al. Modification of the Creator recombination system for proteomics applications: improved expression
[186] by addition of splice sites. BMC Biotechnol, 2006, 6: 13
[187] 107 Liu Q H, Li M Z, Leibham D, et al. The univector plasmid-fusion system, a method for rapid construction of recombinant DNA without
[188] restriction enzymes. Curr Biol, 1998, 8: 1300—1309
[189] 108 Rual J F, Hill D E, Vidal M. ORFeome projects: Gateway between genomics and omics. Curr Opin Chem Biol, 2004, 8: 20—25
[190] 109 Sasaki Y, Sone T, Yoshida S, et al. Evidence for high specificity and efficiency of multiple recombination signals in mixed DNA cloning by
[191] the multisite Gateway system. J Biotechnol, 2004, 107: 233—243
[192] 110 Curtis M D, Grossniklaus U. A Gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol, 2003,
[193] 133: 462—469
[194] 111 Magnani E, Bartling L, Hake S. From Gateway to multisite Gateway in one recombination event. BMC Mol Biol, 2006, 7
[195] 112 Chen Q J, Zhou H M, Chen J, et al. A Gateway-based platform for multigene plant transformation. Plant Mol Biol, 2006, 62: 927—936
[196] 113 Marsischky G, LaBaer J. Many paths to many clones: a comparative look at high-throughput cloning methods. Genome Res, 2004, 14: 2020—
[197] 2028
[198] 114 Komatsua M, Uchiyama T, Omura S, et al. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism.
[199] Proc Natl Acad Sci USA, 2010, 107: 2646—2651
[200] 115 Schetelig M F, Scolari F, Handler A M, et al. Site-specific recombination for the modification of transgenic strains of the Mediterranean
[201] fruit fly Ceratitis capitata. Proc Natl Acad Sci USA, 2009, 106: 18171—18176
[202] 116 Watson A T, Garcia V, Bone N, et al. Gene tagging and gene replacement using recombinase-mediated cassette exchange in Schizosaccharomyces
[203] pombe. Gene, 2008, 407: 63—74
[204] 117 Ikeda H, Ishikawa J, Hanamoto A, et al. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces
[205] avermitilis. Nat Biotechnol, 2003, 21: 526—531
[206] 118 Ow D W. GM maize from site-specific recombination technology, what next? Curr Opin Biotechnol, 2007, 18: 115—120
[207] 119 Hu Q, Kononowicz-Hodges H, Nelson-Vasilchik K, et al. FLP recombinase-mediated site-specific recombination in rice. Plant Biotechnol J,
[208] 2008, 6: 176—188
[209] 2007, 64: 137—143
[210] 120 Fladung M, Becker D. Targeted integration and removal of transgenes in hybrid aspen (Populus tremula L. x P-tremuloides Michx.) using
[211] site-specific recombination systems. Plant Biol, 2010, 12: 334—340
[212] 121 Rubtsova M, Kempe K, Gils A, et al. Expression of active Streptomyces phage φC31 integrase in transgenic wheat plants. Plant Cell Rep,
[213] 2008, 27: 1821—1831
[214] 122 Birchler J A, Yu W, Han F. Plant engineered minichromosomes and artificial chromosome platforms. Cytogenet Genome Res, 2008, 120:
[215] 228—232
[216] 123 Khan M S, Khalid A M, Malik K A. Phage φC31 integrase: a new tool in plastid genome engineering. Trends Plant Sci, 2005, 10: 1—3
[217] 124 Kittiwongwattana C, Lutz K, Clark M, et al. Plastid marker gene excision by the φC31 phage site-specific recombinase. Plant Mol Biol,
[218] 125 Scahill M D, Pastar I, Cross G A M. Cre recombinase-based positive-negative selection systems for genetic manipulation in Trypanosoma
[219] brucei. Mol Biochem Parasit, 2008, 157: 73—82
[220] 126 Davis M W, Morton J J, Carroll D, et al. Gene activation using FLP recombinase in C. elegans. PLoS Genet, 2008, 4: e1000028, doi:
[221] 10.1371/journal.pgen.1000028
[222] 127 Nkrumah L J, Muhle R A, Moura P A et al. Efficient site-specific integration in Plasmodium falciparum chromosomes mediated by
[223] mycobacteriophage Bxb1 integrase. Nat Methods, 2006, 3:615-621
[224] 128 Combe A, Giovannini D, Carvalho T G, et al. Clonal conditional mutagenesis in Malaria parasites. Cell Host Microbe, 2009, 5: 386—396
[225] 129 Nakayama G, Kawaguchi Y, Koga K, et al. Site-specific gene integration in cultured silkworm cells mediated by φC31 integrase. Mol Genet
[226] Genomics, 2006, 275: 1—8
[227] 130 Le X N, Langenau D M, Keefe M D, et al. Heat shock-inducible Cre/lox approaches to induce diverse types of tumors and hyperplasia in
[228] transgenic zebrafish. Proc Natl Acad Sci USA, 2007, 104: 9410—9415
[229] 131 Hans S, Kaslin J, Freudenreich D, et al. Temporally-controlled site-specific recombination in zebrafish. PLoS ONE, 2009, 4: e4640, doi:
[230] 10.1371/journal.pone.0004640
[231] 132 Lister J A. Transgene excision in zebrafish using the φC31 integrase. Genesis, 2010, 48: 137—143
[232] 133 Adams D J, van der Weyden L. Are we Creating problems? Negative effects of Cre recombinase. Genesis, 2001, 29: 115
[233] 134 Tiscornia G, Tergaonkar V, Galimi F, et al. Cre recombinase-inducible RNA interference mediated by lentiviral vectors. Proc Natl Acad Sci
[234] USA, 2004, 101: 7347—7351
[235] 135 Wu S, Ying G, Wu Q, et al. Toward simpler and faster genome-wide mutagenesis in mice. Nature Genet, 2007, 39: 922—930
[236] 136 Sakurai K, Shimoji M, Tahimic C G T, et al. Efficient integration of transgenes into a defined locus in human embryonic stem cells. Nucleic
[237] Acids Res, 2010, 38: e96, doi: 10.1093/nar/gkp1234
[238] 137 Raymond C S, Soriano P. High-efficiency FLP and φC31 site-specific recombination in mammalian cells. PLoS ONE, 2007, 2: e162, doi:
[239] 10.1371/journal.pone.0000162
[240] 138 Groth A C, Olivares E C, Thyagarajan B, et al. A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad
[241] Sci USA, 2000, 97: 5995—6000
[242] 139 Olivares E C, Hollis R P, Chalberg T W, et al. Site-specific genomic integration produces therapeutic factor IX levels in mice. Nat
[243] Biotechnol, 2002, 20: 1124—1128
[244] 140 Ortiz-Urda S, Thyagarajan B, Keene D R, et al. Stable nonviral genetic correction of inherited human skin disease. Nat Med, 2002, 8: 1166—
[245] 1170
[246] 141 Ortiz-Urda S, Thyagarajan B, Keene D R et al. φC31 integrase-mediated nonviral genetic correction of junctional epidermolysis bullosa.
[247] Hum Gene Ther, 2003, 14: 923—928
[248] 142 Ortiz-Urda S, Lin Q, Yant S R, et al. Sustainable correction of junctional epidermolysis bullosa via transposon-mediated nonviral gene
[249] transfer. Gene Ther, 2003, 10: 1099—1104
[250] 143 Bertoni C, Jarrahian S, Wheeler T M, et al. Enhancement of plasmid-mediated gene therapy for muscular dystrophy by directed plasmid
[251] integration. Proc Natl Acad Sci USA, 2006, 103: 419—424
[252] 144 Quenneville S P, Chapdelaine P, Rousseau J, et al. Nucleofection of muscle-derived stem cells and myoblasts with φC31 integrase: stable
[253] expression of a full-length-dystrophin fusion gene by human myoblasts. Mol Ther, 2004, 10: 679—687
[254] 145 Karimi M, Bleys A, Vanderhaeghen R, et al. Building blocks for plant gene assembly. Plant Physiol, 2007, 145: 1183—1191
[255] 146 Huang J, Zhou W K, Dong W, et al. Directed, efficient, and versatile modifications of the Drosophila genome by genomic engineering. Proc
[256] Natl Acad Sci USA, 2009, 106: 8284—8289
[257] 147 Kameyama Y, Kawabe Y, Ito A, et al. An accumulative site-specific gene integration system using Cre recombinase-mediated cassette
[258] exchange. Biotechnol Bioeng, 2010, 105: 1106—1114
[259] 148 Gilbertson L. Cre-lox recombination: Cre-ative tools for plant biotechnology. Trends Biotechnol, 2003, 21: 550—555
[260] 149 Schmidt E E, Taylor D S, Prigge J R, et al. Illegitimate Cre-dependent chromosome rearrangements in transgenic mouse spermatids. Proc
[261] Natl Acad Sci USA, 2000, 97: 13702—13707
[262] Cell, 2001, 8: 233—243
[263] 150 Gromley A, Churchman M L, Zindy F, et al. Transient expression of the Arf tumor suppressor during male germ cell and eye development
[264] in Arf-Cre reporter mice. Proc Natl Acad Sci USA, 2009, 106: 6285—6290
[265] 151 Loonstra A, Vooijs M, Beverloo H B, et al. Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc Natl
[266] Acad Sci USA, 2001, 98: 9209—9214
[267] 152 Buerger A, Rozhitskaya O, Sherwood M C, et al. Dilated cardiomyopathy resulting from high-level myocardial expression of
[268] Cre-recombinase. J Card Failure, 2006, 12: 392—398
[269] 153 Forni P E, Scuoppo C, Imayoshi I, et al. High levels of Cre expression in neuronal progenitors cause defects in brain development leading to
[270] microencephaly and hydrocephaly. J Neurosci, 2006, 26: 9593—9602
[271] 154 Naiche L A, Papaioannou V E. Cre activity causes widespread apoptosis and lethal anemia during embryonic development. Genesis, 2007,
[272] 45: 768—775
[273] 155 Higashi A Y, Ikawa T, Muramatsu M, et al. Direct hematological toxicity and illegitimate chromosomal recombination caused by the
[274] systemic activation of CreERT2. J Immunol, 2009, 182: 5633—5640
[275] 156 Lee J Y, Ristow M, Lin X Y, et al. RIP-Cre revisited, evidence for impairments of pancreatic beta-cell function. J Biol Chem, 2006, 281:
[276] 2649—2653
[277] 157 Coppoolse E R, de Vroomen M J, Roelofs D, et al. Cre recombinase expression can result in phenotypic aberrations in plants. Plant Mol
[278] Biol, 2003, 51: 263—279
[279] 158 Ehrhardt A, Engler J A, Xu H, et al. Molecular analysis of chromosomal rearrangements in mammalian cells after φC31-mediated
[280] integration. Hum Gene Ther, 2006, 17: 1077—1094
[281] 159 Liu J, Jeppesen I, Nielsen K, et al. φC31 integrase induces chromosomal aberrations in primary human fibroblasts. Gene Ther, 2006, 13:
[282] 1188—1190
[283] 160 Liu J S T, Gjetting T, Jensen T G. PhiC31 integrase induces a DNA damage response and chromosomal rearrangements in human adult
[284] fibroblasts. BMC Biotechnol, 2009, 9: 31
[285] 161 Chen J Z, Ji C N, Xu G L, et al. DAXX interacts with phage φC31 integrase and inhibits recombination. Nucleic Acids Res, 2006, 34: 6298—
[286] 6304
[287] 162 Wang B Y, Xu G L, Zhou C H, et al. PhiC31 integrase interacts with TTRAP and inhibits NF-kB activation. Mol Biol Rep, 2010, 37: 2809—
[288] 2816
[289] 163 Silver D P, Livingston D M. Self-excising retroviral vectors encoding the Cre recombinase overcome Cre-mediated cellular toxicity. Mol
[290] 164 Keravala A, Lee S, Thyagarajan B, et al. Mutational derivatives of φC31 integrase with increased efficiency and specificity. Mol Ther, 2009,
[291] 17: 112—120
Full-Text
Contact Us
service@oalib.com
QQ:3279437679
WhatsApp +8615387084133