全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

小空间细颗粒饲养对青少年恒河猴屈光发育及玻璃体腔长度变化的影响

, PP. 1137-1144

Keywords: 近视,近距离注视,灵长类,屈光发育

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用小空间细颗粒饲养方法研究长时间近距离注视对青少年恒河猴屈光状态发育和玻璃体腔长度变化的影响.将12只1.5~2.0岁健康恒河猴随机分为三组,每组四只.其中A组和B组每天分别置于视觉封闭的猴笼内饲养8和4h,同时将食物处理成细小颗粒状置于代谢盘中(需仔细翻找才能获得).每3个月进行一次眼轴长度、玻璃体腔长度、屈光状态和角膜曲率测量,总观察周期为18个月.采用对照t检验进行数据分析,P<0.05有显著性意义.结果显示,观察期间A组眼轴和玻璃体腔长度增长最为显著,屈光状态明显向近视化方向发展;B组眼轴和玻璃体腔长度也有明显增长,但屈光度无明显变化;C组眼轴和玻璃体腔长度增长最为缓慢,屈光度轻度向远视化方向发展.观察期间各组的角膜曲率均无明显改变.研究结果表明,强制性近距离注视能够加快青少年恒河猴玻璃体腔长度的增长,导致单纯性近视的发生与发展,是建立近距离工作相关的灵长类近视眼动物模型的可行性方法.

References

[1]  1 Faivre L, Gorlin R J, Wirtz M K, et al. In frame fibrillin-1 gene deletion in autosomal dominant Weill-Marchesani syndrome. J Med Genet, 2003, 40: 34—36
[2]  2 Dietz H C, Cutting G R, Pyeritz R E, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature, 1991,
[3]  352: 337—339
[4]  3 Knowlton R G, Weaver E J, Struyk A F, et al. Genetic linkage analysis of hereditary arthro-ophthalmopathy (Stickler syndrome) and the
[5]  type II procollagen gene. Am J Hum Genet 1989, 45: 681—688
[6]  4 Ojaimi E, Rose K A, Smith W, et al. Methods for a population-based study of myopia and other eye conditions in school children: the
[7]  Sydney Myopia Study. Ophthalmic Epidemiol, 2005, 12: 59—69
[8]  5 Morgan I, Rose K. How genetic is school myopia? Prog Retin Eye Res, 2005, 24: 1—38
[9]  6 McBrien N A, Morgan I G, Mutti D O. What’s hot in myopia research-The 12th International Myopia Conference, Australia, July 2008.
[10]  Optom Vis Sci, 2009, 86: 2—3
[11]  7 Rose K A, Morgan I G, Smith W, et al. Myopia, lifestyle, and schooling in students of Chinese ethnicity in Singapore and Sydney. Arch
[12]  Ophthalmol, 2008, 126: 527—530
[13]  8 Rose K A, Morgan I G, Ip J, et al. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology, 2008, 115: 1279—1285
[14]  9 Ip J M, Saw S M, Rose K A, et al. Role of near work in myopia: findings in a sample of Australian school children. Invest Ophthalmol Vis
[15]  Sci, 2008, 49: 2903—2910
[16]  10 Harb E, Thorn F, Troilo D. Characteristics of accommodative behavior during sustained reading in emmetropes and myopes. Vision Res,
[17]  2006, 46: 2581—2592
[18]  11 Collins M J, Buehren T, Bece A, et al. Corneal optics after reading, microscopy and computer work. Acta Ophthalmol Scand, 2006, 84: 216—
[19]  224
[20]  12 Cordain L, Eaton S B, Brand Miller J, et al. An evolutionary analysis of the aetiology and pathogenesis of juvenile-onset myopia. Acta
[21]  Ophthalmol Scand, 2002, 80: 125—135
[22]  13 Wong L, Coggon D, Cruddas M, et al. Education, reading, and familial tendency as risk factors for myopia in Hong Kong fishermen. J
[23]  Epidemiol Community Health, 1993, 47: 50—53
[24]  14 Young F A, Leary G A, Baldwin W R, et al. The transmission of refractive errors within eskimo families. Am J Optom Arch Am Acad
[25]  Optom, 1969, 46: 676—685
[26]  15 McBrien N A, Young T L, Pang C P, et al. Myopia: Recent advances in molecular studies; prevalence, progression and risk factors;
[27]  emmetropization; therapies; optical links; peripheral refraction; sclera and ocular growth; signalling cascades; and animal models. Optom
[28]  Vis Sci, 2008
[29]  16 Ip J M, Rose K A, Morgan I G, et al. Myopia and the urban environment: findings in a sample of 12-year-old Australian school children.
[30]  Invest Ophthalmol Vis Sci, 2008, 49: 3858—3863
[31]  17 Liversedge S P, Rayner K, White S J, et al. Binocular coordination of the eyes during reading. Curr Biol, 2006, 16: 1726—1729
[32]  18 Gwiazda J, Thorn F, Held R. Accommodation, accommodative convergence, and response AC/A ratios before and at the onset of myopia in
[33]  children. Optom Vis Sci, 2005, 82: 273—278
[34]  19 Collins M J, Kloevekorn-Norgall K, Buehren T, et al. Regression of lid-induced corneal topography changes after reading. Optom Vis Sci, 2005,
[35]  82: 843—849
[36]  20 Buehren T, Collins M J, Carney L G. Near work induced wavefront aberrations in myopia. Vision Res, 2005, 45: 1297—1312
[37]  21 Smith E L 3rd, Bradley D V, Fernandes A, et al. Form deprivation myopia in adolescent monkeys. Optom Vis Sci, 1999, 76: 428—432
[38]  22 Meyer C, Mueller M F, Duncker G I, et al. Experimental animal myopia models are applicable to human juvenile-onset myopia. Surv
[39]  Ophthalmol, 1999, 44 Suppl 1: S93—102
[40]  23 Schmid K L, Wildsoet C F. Effects on the compensatory responses to positive and negative lenses of intermittent lens wear and ciliary nerve
[41]  section in chicks. Vision Res, 1996, 36: 1023—1036
[42]  24 Schaeffel F, Glasser A, Howland H C. Accommodation, refractive error and eye growth in chickens. Vision Res, 1988, 28: 639—657
[43]  25 Sherman S M, Norton T T, Casagrande V A. Myopia in the lid-sutured tree shrew (Tupaia glis). Brain Res, 1977, 124: 154—157
[44]  26 Zhong X, Ge J, Smith E L 3rd, et al. Image defocus modulates activity of bipolar and amacrine cells in macaque retina. Invest Ophthalmol
[45]  Vis Sci, 2004, 45: 2065—2074
[46]  27 Wu J, Zhong X, Nie H, et al. Influence of optical defocus and form deprivation on the emmetropization of infant rhesus monkeys. Eye Sci,
[47]  2004, 20: 118—122
[48]  28 Fischer A J, Morgan I G, Stell W K. Colchicine causes excessive ocular growth and myopia in chicks. Vision Res, 1999, 39: 685—697
[49]  29 Wallman J, Turkel J, Trachtman J. Extreme myopia produced by modest change in early visual experience. Science, 1978, 201: 1249—1251
[50]  30 Wiesel T N, Raviola E. Myopia and eye enlargement after neonatal lid fusion in monkeys. Nature, 1977, 266: 66—68
[51]  31 Young F A. The effect of restrict visual space on the primate eye. Am J Ophthalmol, 1961, 52
[52]  32 Hoyt C S, Stone R D, Fromer C, et al. Monocular axial myopia associated with neonatal eyelid closure in human infants. Am J Ophthalmol,
[53]  1981, 91: 197—200
[54]  33 Smith E L 3rd, Hung L F, Kee C S, et al. Effects of brief periods of unrestricted vision on the development of form-deprivation myopia in
[55]  monkeys. Invest Ophthalmol Vis Sci, 2002, 43: 291—299
[56]  34 Zadnik K, Mutti D O. How applicable are animal myopia models to human juvenile onset myopia? Vision Res, 1995, 35: 1283—1288
[57]  35 Zhong X W, Ge J, Chen X L, et al. Effects of experimentally induced hyperopic optical defocus on refractive status of adolescent monkeys.
[58]  Chin J Ophthalmol, 2006, 42: 256—260
[59]  36 Zhong X W, Ge J, Nie H H, et al. The study of photorefractive keratectomy induced defocus on emmetropization in infant monkeys. Chin J
[60]  Ophthalmol, 2004, 40: 258—261
[61]  37 Zhong X, Ge J, Nie H, et al. Compensation for experimentally induced hyperopic anisometropia in adolescent monkeys. Invest Ophthalmol
[62]  Vis Sci, 2004, 45: 3373—3379
[63]  38 Wolffsohn J S, Gilmartin B, Li R W, et al. Nearwork-induced transient myopia in preadolescent Hong Kong Chinese. Invest Ophthalmol
[64]  Vis Sci, 2003, 44: 2284—2289
[65]  39 Mallen E A, Kashyap P, Hampson K M. Transient axial length change during the accommodation response in young adults. Invest
[66]  Ophthalmol Vis Sci, 2006, 47: 1251—1254
[67]  40 Mutti D O, Mitchell G L, Moeschberger M L, et al. Parental myopia, near work, school achievement, and children’s refractive error. Invest
[68]  Ophthalmol Vis Sci, 2002, 43: 3633—3640
[69]  41 Smith E L 3rd, Kee C S, Ramamirtham R, et al. Peripheral vision can influence eye growth and refractive development in infant monkeys.
[70]  Invest Ophthalmol Vis Sci, 2005, 46: 3965—3972

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133