全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

应答流感病毒感染的宿主信号途径研究进展

, PP. 993-1001

Keywords: 流感病毒,病毒与宿主相互作用,信号转导,宿主模式识别受体,病毒增殖,翻译控制,细胞凋亡,磷脂酰肌醇-3-激酶信号通路

Full-Text   Cite this paper   Add to My Lib

Abstract:

一系列广泛的宿主细胞信号转导通路可以被流感病毒感染激活.一些信号转导通路引起宿主细胞的先天免疫应答来抵抗流感病毒,而一些其他的信号转导通路却是流感病毒实现高效复制所必需的.本文综述了宿主细胞中由流感病毒感染引起的胞内信号转导,包括宿主模式识别受体(PRRs)相关信号,PKC,Raf/MEK/ERK和PI3K/Akt信号,同时对上述信号通路的下游具体效应进行了总结.这些效应包括宿主细胞对流感病毒的识别,流感病毒的吸附及入侵,流感病毒核蛋白的输出,病毒蛋白的翻译控制,流感病毒引起的宿主细胞凋亡.对流感病毒引起的细胞信号转导的研究有助于更加清晰地认识病毒与宿主的相互作用,也是寻找新的抗病毒靶点和新的抗病毒策略的基础.

References

[1]  1 Proud C G. PKR: a new name and new roles. Trends Biochem Sci, 1995, 20: 241—246
[2]  2 Williams B R. PKR; a sentinel kinase for cellular stress. Oncogene, 1999, 18: 6112—6120
[3]  3 Dauber B, Martinez-Sobrido L, Schneider J, et al. Influenza B virus ribonucleoprotein is a potent activator of the antiviral kinase PKR.
[4]  PLoS Pathog, 2009, 5: e1000473
[5]  4 Balachandran S, Barber G N. PKR in innate immunity, cancer, and viral oncolysis. Methods Mol Biol, 2007, 383: 277—301
[6]  5 Garcia M A, Meurs E F, Esteban M. The dsRNA protein kinase PKR: virus and cell control. Biochimie, 2007, 89: 799—811
[7]  6 Balachandran S, Roberts P C, Brown L E, et al. Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral
[8]  infection. Immunity, 2000, 13: 129—141
[9]  7 Takizawa T, Ohashi K, Nakanishi Y. Possible involvement of double-stranded RNA-activated protein kinase in cell death by influenza virus
[10]  infection. J Virol, 1996, 70: 8128—8132
[11]  8 Balachandran S, Roberts P C, Kipperman T, et al. Alpha/beta interferons potentiate virus-induced apoptosis through activation of the
[12]  FADD/Caspase-8 death signaling pathway. J Virol, 2000, 74: 1513—1523
[13]  9 Li S, Min J Y, Krug R M, et al. Binding of the influenza A virus NS1 protein to PKR mediates the inhibition of its activation by either
[14]  PACT or double-stranded RNA. Virology, 2006, 349: 13—21
[15]  10 Lu Y, Wambach M, Katze M G, et al. Binding of the influenza virus NS1 protein to double-stranded RNA inhibits the activation of the
[16]  protein kinase that phosphorylates the elF-2 translation initiation factor. Virology, 1995, 214: 222—228
[17]  11 Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol, 2003, 21: 335—376
[18]  12 Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol, 2004, 4: 499—511
[19]  13 Diebold S S, Kaisho T, Hemmi H, et al. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science,
[20]  2004, 303: 1529—1531
[21]  14 Lund J M, Alexopoulou L, Sato A, et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA, 2004,
[22]  101: 5598—5603
[23]  15 Guillot L, Le Goffic R, Bloch S, et al. Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded
[24]  RNA and influenza A virus. J Biol Chem, 2005, 280: 5571—5580
[25]  16 Kujime K, Hashimoto S, Gon Y, et al. p38 mitogen-activated protein kinase and c-jun-NH2-terminal kinase regulate RANTES production
[26]  by influenza virus-infected human bronchial epithelial cells. J Immunol, 2000, 164: 3222—3228
[27]  17 Lee D C, Cheung C Y, Law A H, et al. p38 mitogen-activated protein kinase-dependent hyperinduction of tumor necrosis factor alpha
[28]  expression in response to avian influenza virus H5N1. J Virol, 2005, 79: 10147—10154
[29]  18 Maruoka S, Hashimoto S, Gon Y, et al. ASK1 regulates influenza virus infection-induced apoptotic cell death. Biochem Biophys Res
[30]  protein. Cell Microbiol, 2007, 9: 930—938
[31]  36 Gack M U, Albrecht R A, Urano T, et al. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral
[32]  RNA sensor RIG-I. Cell Host Microbe, 2009, 5: 439—449
[33]  37 Nemeroff M E, Barabino S M L, Li Y, et al. Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3''
[34]  end formation of cellular pre-mRNAs. Molecular Cell, 1998, 1: 991—1000
[35]  38 Conenello G M, Palese P. Influenza A virus PB1-F2: a small protein with a big punch. Cell Host Microbe, 2007, 2: 207—209
[36]  39 Mitzner D, Dudek S E, Studtrucker N, et al. Phosphorylation of the influenza A virus protein PB1-F2 by PKC is crucial for apoptosis
[37]  promoting functions in monocytes. Cell Microbiol, 2009, 11: 1502—1516
[38]  40 Zamarin D, García-Sastre A, Xiao X, et al. Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1.
[39]  PLoS Pathog, 2005, 1: e4
[40]  41 Zamarin D, Ortigoza M B, Palese P. Influenza A virus PB1-F2 protein contributes to viral pathogenesis in mice. J Virol, 2006, 80: 7976—
[41]  7983
[42]  42 Mcauley J L, Hornung F, Boyd K L, et al. Expression of the 1918 influenza A virus PB1-F2 enhances the pathogenesis of viral and
[43]  secondary bacterial pneumonia. Cell Host Microbe, 2007, 2: 240—249
[44]  43 Mazur I, Wurzer W J, Ehrhardt C, et al. Acetylsalicylic acid (ASA) blocks influenza virus propagation via its NF-κB-inhibiting activity.
[45]  Cell Microbiol, 2007, 9: 1683—1694
[46]  44 Toker A. Signaling through protein kinase C. Front Biosci, 1998, 3: D1134—1147
[47]  45 Constantinescu S N, Cernescu C D, Popescu L M. Effects of protein kinase C inhibitors on viral entry and infectivity. FEBS Lett, 1991, 292:
[48]  31—33
[49]  46 Arora D J, Gasse N. Influenza virus hemagglutinin stimulates the protein kinase C activity of human polymorphonuclear leucocytes. Arch
[50]  Virol, 1998, 143: 2029—2037
[51]  47 Kunzelmann K, Beesley A H, King N J, et al. Influenza virus inhibits amiloride-sensitive Na+ channels in respiratory epithelia. Proc Natl
[52]  Acad Sci USA, 2000, 97: 10282—10287
[53]  48 Root C N, Wills E G, Mcnair L L, et al. Entry of influenza viruses into cells is inhibited by a highly specific protein kinase C inhibitor. J
[54]  Gen Virol, 2000, 81: 2697—2705
[55]  49 Sieczkarski S B, Brown H A, Whittaker G R. Role of protein kinase C betaII in influenza virus entry via late endosomes. J Virol, 2003, 77:
[56]  460—469
[57]  50 Hoffmann H H, Palese P, Shaw M L. Modulation of influenza virus replication by alteration of sodium ion transport and protein kinase C
[58]  activity. Antiviral Res, 2008, 80: 124—134
[59]  51 Lazrak A, Iles K E, Liu G, et al. Influenza virus M2 protein inhibits epithelial sodium channels by increasing reactive oxygen species.
[60]  FASEB J, 2009, 23: 3829—3842
[61]  52 Sieczkarski S B, Whittaker G R. Characterization of the host cell entry of filamentous influenza virus. Arch Virol, 2005, 150: 1783—1796
[62]  53 Pleschka S. RNA viruses and the mitogenic Raf/MEK/ERK signal transduction cascade. Biol Chem, 2008, 389: 1273—1282
[63]  54 Huang X, Liu T, Muller J, et al. Effect of influenza virus matrix protein and viral RNA on ribonucleoprotein formation and nuclear export.
[64]  58 Ludwig S, Wolff T, Ehrhardt C, et al. MEK inhibition impairs influenza B virus propagation without emergence of resistant variants. FEBS
[65]  Letters, 2004, 561: 37—43
[66]  59 Pleschka S, Wolff T, Ehrhardt C, et al. Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade. Nat
[67]  Cell Biol, 2001, 3: 301—305
[68]  60 Beaton A R, Krug R M. Selected host cell capped RNA fragments prime influenza viral RNA transcription in vivo. Nucleic Acids Res, 1981,
[69]  9: 4423—4436
[70]  61 Krug R M. Priming of influenza viral RNA transcription by capped heterologous RNAs. Curr Top Microbiol Immunol, 1981, 93: 125—149
[71]  62 Garfinkel M S, Katze M G. Translational control by influenza virus. Selective translation is mediated by sequences within the viral mRNA
[72]  5′-untranslated region. J Biol Chem, 1993, 268: 22223—22226
[73]  63 Chen Z, Li Y, Krug R M. Influenza A virus NS1 protein targetspoly(A)-binding protein II of the cellular 3
[74]  [prime]-end processing machinery.
[75]  EMBO J, 1999, 18: 2273—2283
[76]  64 Lu Y, Qian X Y, Krug R M. The influenza virus NS1 protein: a novel inhibitor of pre-mRNA splicing. Gene Dev, 1994, 8: 1817—1828
[77]  65 De La Luna S, Fortes P, Beloso A, et al. Influenza virus NS1 protein enhances the rate of translation initiation of viral mRNAs. J Virol,
[78]  1995, 69: 2427—2433
[79]  66 Enami K, Sato T A, Nakada S, et al. Influenza virus NS1 protein stimulates translation of the M1 protein. J Virol, 1994, 68: 1432—1437
[80]  67 Katze M G, Decorato D, Krug R M. Cellular mRNA translation is blocked at both initiation and elongation after infection by influenza virus
[81]  or adenovirus. J Virol, 1986, 60: 1027—1039
[82]  68 Park Y W, Katze M G. Translational control by influenza virus. Identification of cis-acting sequences and trans-acting factors which may
[83]  regulate selective viral mRNA translation. J Biol Chem, 1995, 270: 28433—28439
[84]  69 Aragon T, De La Luna S, Novoa I, et al. Eukaryotic translation initiation factor 4GI is a cellular target for NS1 protein, a translational
[85]  87 Zhirnov O P, Klenk H D. Control of apoptosis in influenza virus-infected cells by up-regulation of Akt and p53 signaling. Apoptosis, 2007,
[86]  12: 1419—1432
[87]  88 Lu X, Masic A, Li Y, et al. The PI3K/Akt pathway inhibits influenza A virus-induced Bax-mediated apoptosis by negatively regulating the
[88]  JNK pathway via ASK1. J Gen Virol, 91: 1439—1449
[89]  89 Ehrhardt C, Ludwig S. A new player in a deadly game: influenza viruses and the PI3K/Akt signalling pathway. Cell Microbiol, 2009, 11:
[90]  863—871
[91]  90 Ehrhardt C, Marjuki H, Wolff T, et al. Bivalent role of the phosphatidylinositol-3-kinase (PI3K) during influenza virus infection and host
[92]  cell defence. Cell Microbiol, 2006, 8: 1336—1348
[93]  91 Shin Y K, Liu Q, Tikoo S K, et al. Effect of the phosphatidylinositol 3-kinase/Akt pathway on influenza A virus propagation. J Gen Virol,
[94]  2007, 88: 942—950
[95]  92 Flory E, Kunz M, Scheller C, et al. Influenza virus-induced NF-kappaB-dependent gene expression is mediated by overexpression of viral
[96]  proteins and involves oxidative radicals and activation of IkappaB kinase. J Biol Chem, 2000, 275: 8307—8314
[97]  93 Gern J E, French D A, Grindle K A, et al. Double-stranded RNA induces the synthesis of specific chemokines by bronchial epithelial cells.
[98]  Am J Respir Cell Mol Biol, 2003, 28: 731—737
[99]  94 Pahl H L, Baeuerle P A. Expression of influenza virus hemagglutinin activates transcription factor NF-kappa B. J Virol, 1995, 69: 1480—1484
[100]  95 Severa M, Fitzgerald K A. TLR-mediated activation of type I IFN during antiviral immune responses: fighting the battle to win the war.
[101]  Curr Top Microbiol Immunol, 2007, 316: 167—192
[102]  96 Tenoever B R, Ng S L, Chua M A, et al. Multiple functions of the IKK-related kinase IKKepsilon in interferon-mediated antiviral immunity.
[103]  Science, 2007, 315: 1274—1278
[104]  97 Nimmerjahn F, Dudziak D, Dirmeier U, et al. Active NF-kappaB signalling is a prerequisite for influenza virus infection. J Gen Virol, 2004,
[105]  85: 2347—2356
[106]  98 Kumar N, Xin Z T, Liang Y, et al. NF-kappaB signaling differentially regulates influenza virus RNA synthesis. J Virol, 2008, 82: 9880—9889
[107]  99 Wurzer W J, Ehrhardt C, Pleschka S, et al. NF-kappaB-dependent induction of tumor necrosis factor-related apoptosis-inducing ligand
[108]  (TRAIL) and Fas/FasL is crucial for efficient influenza virus propagation. J Biol Chem, 2004, 279: 30931—30937
[109]  100 Bergh?ll H, Sirén J, Sarkar D, et al. The interferon-inducible RNA helicase, mda-5, is involved in measles virus-induced expression of
[110]  antiviral cytokines. Microbes Infect, 2006, 8: 2138—2144
[111]  101 Liu P, Jamaluddin M, Li K, et al. Retinoic acid-inducible gene I mediates early antiviral response and Toll-like receptor 3 expression in
[112]  respiratory syncytial virus-infected airway epithelial cells. J Virol, 2007, 81: 1401—1411
[113]  102 Thompson A J, Locarnini S A. Toll-like receptors, RIG-I-like RNA helicases and the antiviral innate immune response. Immunol Cell Biol,
[114]  2007, 85: 435—445
[115]  103 Pothlichet J, Chignard M, Si-Tahar M. Cutting edge: innate immune response triggered by influenza A virus is negatively regulated by
[116]  SOCS1 and SOCS3 through a RIG-I/IFNAR1-dependent pathway. J Immunol, 2008, 180: 2034—2038
[117]  104 Rintahaka J, Wiik D, Kovanen P E, et al. Cytosolic antiviral RNA recognition pathway activates caspases 1 and 3. J Immunol, 2008, 180:
[118]  1749—1757
[119]  105 Karlas A, Machuy N, Shin Y, et al. Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature,
[120]  2010, 463: 818—822
[121]  106 Konig R, Stertz S, Zhou Y, et al. Human host factors required for influenza virus replication. Nature, 2010, 463: 813—817
[122]  24 Barral P M, Sarkar D, Su Z Z, et al. Functions of the cytoplasmic RNA sensors RIG-I and MDA-5: key regulators of innate immunity.
[123]  Pharmacol Ther, 2009, 124: 219—234
[124]  25 Takeuchi O, Akira S. MDA5/RIG-I and virus recognition. Curr Opin Immunol, 2008, 20: 17—22
[125]  26 Yoneyama M, Fujita T. RIG-I family RNA helicases: cytoplasmic sensor for antiviral innate immunity. Cytokine Growth FR, 18: 545—551
[126]  27 Fujita T, Onoguchi K, Onomoto K, et al. Triggering antiviral response by RIG-I-related RNA helicases. Biochimie, 89: 754—760
[127]  28 Le Goffic R, Pothlichet J, Vitour D, et al. Cutting edge: influenza A virus activates TLR3-dependent inflammatory and RIG-I-dependent
[128]  antiviral responses in human lung epithelial cells. J Immunol, 2007, 178: 3368—3372
[129]  29 Matikainen S, Siren J, Tissari J, et al. Tumor necrosis factor alpha enhances influenza A virus-induced expression of antiviral cytokines by
[130]  activating RIG-I gene expression. J Virol, 2006, 80: 3515—3522
[131]  30 Hale B G, Randall R E, Ortin J, et al. The multifunctional NS1 protein of influenza A viruses. J Gen Virol, 2008, 89: 2359—2376
[132]  31 Talon J, Horvath C M, Polley R, et al. Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein. J Virol,
[133]  2000, 74: 7989—7996
[134]  32 Ehrhardt C, Seyer R, Hrincius E R, et al. Interplay between influenza A virus and the innate immune signaling. Microbes Infect, 2010, 12:
[135]  81—87
[136]  33 Guo Z, Chen L M, Zeng H, et al. NS1 protein of influenza A virus inhibits the function of intracytoplasmic pathogen sensor, RIG-I. Am J
[137]  Respir Cell Mol Biol, 2007, 36: 263—269
[138]  34 Mibayashi M, Martinez-Sobrido L, Loo Y M, et al. Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the
[139]  NS1 protein of influenza A virus. J Virol, 2007, 81: 514—524
[140]  35 Opitz B, Rejaibi A, Dauber B, et al. IFNbeta induction by influenza A virus is mediated by RIG-I which is regulated by the viral NS1
[141]  Virology, 2001, 287: 405—416
[142]  55 Sakaguchi A, Hirayama E, Hiraki A, et al. Nuclear export of influenza viral ribonucleoprotein is temperature-dependently inhibited by
[143]  dissociation of viral matrix protein. Virology, 2003, 306: 244—253
[144]  56 Marjuki H, Alam M I, Ehrhardt C, et al. Membrane accumulation of influenza A virus hemagglutinin triggers nuclear export of the viral
[145]  genome via protein kinase Calpha-mediated activation of ERK signaling. J Biol Chem, 2006, 281: 16707—16715
[146]  57 Marjuki H, Yen H L, Franks J, et al. Higher polymerase activity of a human influenza virus enhances activation of the hemagglutinin-induced
[147]  Raf/MEK/ERK signal cascade. Virol J, 2007, 4: 134
[148]  activator of influenza virus. Mol Cell Biol, 2000, 20: 6259—6268
[149]  70 Burgui I, Aragon T, Ortin J, et al. PABP1 and eIF4GI associate with influenza virus NS1 protein in viral mRNA translation initiation
[150]  complexes. J Gen Virol, 2003, 84: 3263—3274
[151]  71 Beretta L, Gingras A C, Svitkin Y V, et al. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of
[152]  translation. EMBO J, 1996, 15: 658—664
[153]  72 Katze M G. Regulation of the interferon-induced PKR: can viruses cope? Trends Microbiol, 1995, 3: 75—78
[154]  73 Goodman A G, Smith J A, Balachandran S, et al. The cellular protein P58IPK regulates influenza virus mRNA translation and replication
[155]  through a PKR-mediated mechanism. J Virol, 2007, 81: 2221—2230
[156]  74 Hatada E, Hasegawa M, Mukaigawa J, et al. Control of influenza virus gene expression: quantitative analysis of each viral RNA species in
[157]  infected cells. J Biochem, 1989, 105: 537—546
[158]  75 Shapiro G I, Gurney T Jr, Krug R M. Influenza virus gene expression: control mechanisms at early and late times of infection and
[159]  nuclear-cytoplasmic transport of virus-specific RNAs. J Virol, 1987, 61: 764—773
[160]  76 Smith G L, Hay A J. Replication of the influenza virus genome. Virology, 1982, 118: 96—108
[161]  77 Duronio V. The life of a cell: apoptosis regulation by the PI3K/PKB pathway. Biochem J, 2008, 415: 333—344
[162]  78 Franke T F, Hornik C P, Segev L, et al. PI3K/Akt and apoptosis: size matters. Oncogene, 2003, 22: 8983—8998
[163]  79 Vivanco I, Sawyers C L. The phosphatidylinositol 3-Kinase-AKT pathway in human cancer. Nat Rev Cancer, 2002, 2: 489—501
[164]  80 Ji W T, Liu H J. PI3K-Akt signaling and viral infection. Recent Pat Biotechnol, 2008, 2: 218—226
[165]  81 Hale B G, Batty I H, Downes C P, et al. Binding of influenza A virus NS1 protein to the inter-SH2 domain of p85 suggests a novel
[166]  mechanism for phosphoinositide 3-kinase activation. J Biol Chem, 2008, 283: 1372—1380
[167]  82 Hale B G, Jackson D, Chen Y H, et al. Influenza A virus NS1 protein binds p85beta and activates phosphatidylinositol-3-kinase signaling.
[168]  Proc Natl Acad Sci USA, 2006, 103: 14194—14199
[169]  83 Hale B G, Randall R E. PI3K signalling during influenza A virus infections. Biochem Soc Trans, 2007, 35: 186—187
[170]  84 Li Y, Anderson D H, Liu Q, et al. Mechanism of influenza A virus NS1 protein interaction with the p85beta, but not the p85alpha, subunit
[171]  of phosphatidylinositol 3-kinase (PI3K) and up-regulation of PI3K activity. J Biol Chem, 2008, 283: 23397—23409
[172]  85 Shin Y K, Li Y, Liu Q, et al. SH3 binding motif 1 in influenza A virus NS1 protein is essential for PI3K/Akt signaling pathway activation. J Virol, 2007, 81: 12730—12739
[173]  86 Shin Y K, Liu Q, Tikoo S K, et al. Influenza A virus NS1 protein activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway by direct
[174]  interaction with the p85 subunit of PI3K. J Gen Virol, 2007, 88: 13—18
[175]  Commun, 2003, 307: 870—876
[176]  19 Mizumura K, Hashimoto S, Maruoka S, et al. Role of mitogen-activated protein kinases in influenza virus induction of prostaglandin E2
[177]  from arachidonic acid in bronchial epithelial cells. Clin Exp Allergy, 2003, 33: 1244—1251
[178]  20 Kakugawa S, Shimojima M, Goto H, et al. The MAPK-activated kinase RSK2 plays a role in innate immune responses to influenza virus
[179]  infection. J Virol, 2009, 83: 2510—2517
[180]  21 Kajiya T, Orihara K, Hamasaki S, et al. Toll-like receptor 2 expression level on monocytes in patients with viral infections: monitoring
[181]  infection severity. J Infect, 2008, 57: 249—259
[182]  22 Lee R M, White M R, Hartshorn K L. Influenza a viruses upregulate neutrophil toll-like receptor 2 expression and function. Scand J
[183]  Immunol, 2006, 63: 81—89
[184]  23 Whitmore M M, Iparraguirre A, Kubelka L, et al. Negative regulation of TLR-signaling pathways by activating transcription factor-3. J
[185]  Immunol, 2007, 179: 3622—3630

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133