20 Wang L, Luo Y Z, Zhang L, et al. Rolling circle amplification-mediated hairpin RNA (RMHR) library construction in plants. Nucleic Acids Res, 2008, 36: 1—9
[2]
21 Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248—254
[3]
22 Shahmuradov I A, Gammerman A J, Hancock J M, et al. PlantProm: a database of plant promoter sequences. Nucleic Acids Res, 2003, 31: 114—117
[4]
23 Rombauts S, Déhais P, Van Montagu M, et al. PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Res, 1999, 27: 295—296
[5]
24 Yamaguchi-Shinozaki K, Shinozaki K. Arabidopsis DNA encoding two desiccation-responsive rd29 genes. Plant Physiol, 1993, 101: 1119—1120
[6]
25 Baker S S, Wilhelm K S, Thomashow M F. The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol, 1994, 24: 701—713
[7]
26 Kim H J, Kim Y K, Park J Y, et al. Light signalling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. Plant J, 2002, 29: 693—704
[8]
27 Goldsbrough A P, Albrecht H, Stratford R. Salicylic acid-inducible binding of a tobacco nuclear protein to a 10 bp sequence which is highly conserved amongst stress-inducible genes. Plant J, 1993, 3: 563—571
[9]
28 Brown R L, Kazan K, McGrath K C, et al. A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol, 2003, 132: 1020—1032
[10]
29 Chakravarthy S, Tuori R P, D’Ascenzo M D, et al. The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. Plant Cell, 2003, 15: 3033—3050
[11]
30 Xu X, Chen C, Fan B, et al. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell, 2006, 18: 1310—1326
[12]
1 Popescu S C, Popescu G V, Bachan S, et al. MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev, 2009, 23: 80—92
[13]
2 Colcombet J, Hirt H. Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J, 2008, 413: 217—226
[14]
3 Mishra N S, Tuteja R, Tuteja N. Signaling through MAP kinase networks in plants. Arch Biochem Biophys, 2006, 452: 55—68
[15]
4 Mizoguchi T, Irie K, Hirayama T, et al. A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold and water stress in Arabidopsis thaliana. Proc Natl Acad Sci USA, 1996, 93: 765—769
[16]
5 Nakagami H, Pitzschke A, Hirt H. Emerging MAP kinase pathways in plant stress signaling. Trends Plant Sci, 2005, 10: 339—346
[17]
6 Ren D, Liu Y, Yang K Y, et al. A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc Natl Acad Sci USA, 2008, 105: 5638—5643
[18]
7 Ichimura K, Shinozaki K, Tena G, et al. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci, 2002, 7: 301—308
[19]
8 Droillard M, Boudsocq M, Barbier-Brygoo H, et al. Different protein kinase families are activated by osmotic stresses in Arabidopsis thaliana cell suspensions. Involvement of the MAP kinases AtMPK3 and AtMPK6. FEBS Lett, 2002, 527: 43—50
[20]
9 Lu C, Han M H, Guevara-Garcia A, et al. Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid. Proc Natl Acad Sci USA, 2002, 99: 15812—15817
[21]
10 Asai T, Tena G, Plotnikova J, et al. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 2002, 415: 977—983
[22]
11 Wang H, Ngwenyama N, Liu Y, et al. Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell, 2007, 19: 63—73
[23]
12 Ramonell K, Berrocal-Lobo M, Koh S, et al. Loss-of-function mutations in chitin responsive genes show increased susceptibility to the powdery mildew pathogen Erysiphe cichoracearum. Plant Physiol, 2005, 138: 1027—1036
[24]
13 Kovtun Y, Chiu W L, Tena G, et al. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA, 2000, 97: 2940—2945
[25]
14 Higo K, Ugawa Y, Iwamoto M, et al. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res, 1999, 27: 297—300
[26]
15 Palaniswamy S K, James S, Sun H, et al. AGRIS and AtRegNet: a platform to link cis-regulatory elements and transcription factors into regulatory networks. Plant Physiol, 2006, 140: 818—829
[27]
16 Davuluri R V, Sun H, Palaniswamy S K, et al. AGRIS: Arabidopsis gene regulatory information server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. BMC Bioinformatics, 2003, 4: 25
[28]
17 Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735—743
[29]
18 Zhou J, Wang L, Du J M, et al. Isolation and characterization of γ-TMT gene promoter from Arabidopsis thaliana. Chin J Biotechnol, 2006, 22: 835—839
[30]
19 Zhu Y X, Wang L, Zhang L, et al. Isolation and characterization of homogentisate phytyltransferase (HPT) gene promoter from Arabidopsis thaliana. Acta Agron Sin, 2007, 33: 554—559