OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
胁迫相关基因CIPK14在PHYA介导抑制拟南芥远红光黄化苗转绿过程中的作用
, PP. 970-977
Keywords: 叶绿素,CIPK14,远红光,转绿抑制,POR,光敏色素A
Abstract:
本文对CBL互作蛋白激酶,CIPK14参与拟南芥光敏色素A介导的,远红光黄化苗转绿抑制调控进行了研究.结果发现,拟南芥光敏色素A功能缺失突变体(phyA)远红光黄化苗(4天)转入白光处理后,仅0.5h叶片迅速转绿;相同条件下,CIPK14基因插入失活突变体(cipk14)远红光黄化苗,经过15h白光处理之后叶片才开始转绿;野生型(Col-4)远红光黄化苗转绿时间介于突变体phyA与cipk14之间.基因表达分析表明,上述不同基因型拟南芥远红光黄化苗转绿的快慢,与原叶绿素酸酯还原酶基因表达量存在正相关性.结合研究发现——CIPK14基因受到远红光调节,并且表达具有时钟节律性认为,Ca2+调节蛋白CIPK14,可能在PhyA信号传导途径的上游分支介入PhyA介导的远红光黄化苗转绿抑制调控.
References
[1] | 1 Trewavas A J, Knight M R. Mechanical signalling, calcium and plant form. Plant Mol Biol, 1994, 26: 1329—1341
|
[2] | 2 Weinl S, Kudla J. The CBL–CIPK Ca2+-decoding signalling network: function and perspectives. New Phytol, 2009, 184: 517—528
|
[3] | 3 Mcainsh M R, Pittman J K. Shaping the calcium signature. New Phytol, 2009, 181: 275—294
|
[4] | 4 Chung E, Park J M, Oh S K, et al. Molecular and biochemical characterization of the Capsicum annuum calcium-dependent protein kinase 3
|
[5] | (CaCDPK3) gene induced by abiotic and biotic stresses. Planta, 2004, 220: 286—295
|
[6] | 5 Ludwig A A, Saitoh H, Felix G, et al. Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling
|
[7] | controls stress responses in plants. Proc Natl Acad Sci USA, 2005, 102: 10736—10741
|
[8] | 6 Frohnmeyer H, Loyall L, Blatt M R, et al. Millisecond UV-B irradiation evokes prolonged elevation of cytosolic-free Ca2+ and stimulates
|
[9] | gene expression in transgenic parsley cell cultures. Plant J, 1999, 20: 109—117
|
[10] | 7 Kim K N, Cheong Y H, Grant J J, et al. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal
|
[11] | transduction in Arabidopsis. Plant Cell, 2003, 15: 411—423
|
[12] | 8 Trewavas A J, Malhó R. Ca2+ signalling in plant cells: the big network! Curr Opin Plant Biol, 1998, 1: 428—433
|
[13] | 9 Nie X, Durnin D C, Igamberdiev A U, et al. Cytosolic calcium is involved in the regulation of barley hemoglobin gene expression. Planta,
|
[14] | 2006, 223: 542—549
|
[15] | 10 Kolukisaoglu U, Weinl S, Blazevic D, et al. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice
|
[16] | CBL-CIPK signaling networks. Plant Physiol, 2004, 134: 43—58
|
[17] | 11 Ishitani M, Liu J, Halfter U, et al. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell, 2000, 12:
|
[18] | 1667—1678
|
[19] | 12 Nagae M, Nozawa A, Koizumi N, et al. The crystal structure of the novel calcium-binding protein AtCBL2 from Arabidopsis thaliana. J
|
[20] | Biol Chem, 2003, 278: 42240—42246
|
[21] | 13 Halfter U, Ishitani M, Zhu J K. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding
|
[22] | USA, 2007,104: 7289—7294
|
[23] | 44 Barnes S A, Nishizawa N K, Quaggio R B, et al. Far-red light blocks greening of Arabidopsis seedlings via a phytochrome A-mediated
|
[24] | change in plastid development. Plant Cell, 1996, 8: 601—615
|
[25] | 45 Boylan M T, Quail P H. Phytochrome A overexpression inhibits hypocotyl elongation in transgenic Arabidopsis. Proc Natl Acad Sci USA,
|
[26] | 1991, 88: 10806—10810
|
[27] | 46 Parks B M, Quail P H. hy8, a new class of Arabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell, 1993, 5: 39—
|
[28] | 48
|
[29] | 47 McCormac A C, Terry M J. Loss of nuclear gene expression during the phytochrome A-mediated far-red block of greening response. Plant
|
[30] | Physiol, 2002, 130: 402—414
|
[31] | 48 Armstrong G A, Runge S, Frick G, et al. Identification of NADPH-protochlorophyllide oxidoreductases A and 6, a branched pathway for
|
[32] | light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol, 1995, 108: 1505—1517
|
[33] | 49 Holtorf H, Reinbothe S, Reinbothe C, et al. Two routes of chlorophyllide synthesis that are differentially regulated by light in barley
|
[34] | (Hordeum vulgare L.). Proc Natl Acad Sci USA, 1995, 92: 3254—3258
|
[35] | protein SOS3. Proc Natl Acad Sci USA, 2000, 97: 3735—3740
|
[36] | 14 Hrabak E M, Chan C W, Gribskov M, et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol, 2003, 132: 666—
|
[37] | 680
|
[38] | 15 Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247—273
|
[39] | 16 Pandey G K, Grant J J, Cheong Y H, et al. Calcineurin-B-like protein CBL9 interacts with target kinase CIPK3 in the regulation of ABA
|
[40] | response in seed germination. Molecular Plant, 2008, 1: 238—248
|
[41] | 17 秦玉芝, 李旭, 郭明, 等. 钙传感蛋白互作激酶CIPK14 参与拟南芥盐和ABA 胁迫应答调节. 中国科学C 辑: 生命科学, 2008, 38:
|
[42] | 446—457
|
[43] | 18 Johnson C H, Knight M R, Kondo T, et al. Circadian oscillations of cytosolic and chloroplastic free calcium in plants. Science, 1995, 269:
|
[44] | 1863—1865
|
[45] | 19 Webb A A R. The physiology of circadian rhythms in plants. New Phytol, 2003, 160: 281—303
|
[46] | 20 Dodd A N, Love J, Webb A A R. The plant clock shows its metal: circadian regulation of cytosolic free Ca2+. Trends Plant Sci, 2005, 10: 15—
|
[47] | 21
|
[48] | 21 Nancy A E. Circadian regulation of Ca2+ signalling. Plant Cell, 2007, 19: 3317
|
[49] | 22 Love J, Dodd A N, Webb A A R . Circadian and diurnal calcium oscillations encode photoperiodic information in Arabidopsis. Plant Cell,
|
[50] | 2004, 16: 956—966
|
[51] | 23 Harmer S L, Hogenesch J B, Straume M, et al. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science,
|
[52] | 2000, 290: 2110—2113
|
[53] | 24 Edwards K D, Anderson P E, Hall A, et al. FLOWERING LOCUS C mediates natural variation in the high-temperature response of the
|
[54] | Arabidopsis circadian clock. Plant Cell, 2006, 18: 639—650
|
[55] | 25 Covington M F, Harmer S L. The circadian clock regulates auxin signaling and responses in Arabidopsis. PLoS Biol, 2007, 5: e222
|
[56] | 26 Michael T P, Mockler T C, Breton G, et al. Network discovery pipeline elucidates conserved time-of-day–specific cis-regulatory modules.
|
[57] | PLoS Genet, 2008, 4: e14
|
[58] | 27 Mizuno T, Yamashino T. Comparative transcriptome of diurnally oscillating genes and hormone-responsive genes in Arabidopsis thaliana:
|
[59] | insight into circadian clock-controlled daily responses to common ambient stresses in plants. Plant Cell Physiol, 2008, 49: 481—487
|
[60] | 28 Xu X, Hotta C T, Dodd A N, et al. Distinct light and clock modulation of cytosolic free Ca2+ oscillations and rhythmic CHLOROPHYLL
|
[61] | A/B BINDING PROTEIN2 promoter activity in Arabidopsis. Plant Cell, 2007, 19: 3474—3490
|
[62] | 29 Schafer E, Nagy F. Photomorphogenesis in Plants and Bacteria, 3rd ed. Dordrecht: Springer, 2006
|
[63] | 30 Casson S A, Franklin K A, Gray J E, et al. Phytochrome B and PIF4 regulate stomatal development in response to light quantity. Curr Biol,
|
[64] | 2009, 19: 229—234
|
[65] | P F, Kay S A. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science, 1998,
|
[66] | 282: 1488—1494
|
[67] | 33 Sharrock R A, Quail P H. Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant
|
[68] | regulatory photoreceptor family. Genes Dev, 1989, 3: 1745—1757
|
[69] | 34 Clack T, Mathews S, Sharrock R A. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequence and
|
[70] | expression of PHYD and PHYE. Plant Mol Biol, 1994, 25: 413—427
|
[71] | 35 Franklin K A, Quail P H. Phytochrome functions in Arabidopsis development. J Exp Bot, 2010, 61: 11—24
|
[72] | 36 Wang H, Deng X W. Dissecting the phytochrome A-dependent signaling network in higher plants. Trends Plant Sci, 2003, 8: 172—178
|
[73] | 37 Clough R C, Vierstra R D. Phytochrome degradation. Plant Cell Environ, 1997, 20: 713—721
|
[74] | 38 Sharrock R A, Clack T. Patterns of expression and normalized levels of the five Arabidopsis phytochromes. Plant Physiol, 2002, 130: 442—
|
[75] | 456
|
[76] | 39 Guo H, Mockler T, Duong H, et al. SUB1, an Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction.
|
[77] | Science, 2001, 19: 487—490
|
[78] | 40 Reed J W, Nagatani A, Elich T D, et al. Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis
|
[79] | development. Plant Physiol, 1994, 104: 1139—1149
|
[80] | 41 Mockler T, Yang H, Yu X, et al. Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc Natl Acad Sci USA, 2003, 100:
|
[81] | 2140—2145
|
[82] | 42 Mockler T C, Guo H, Yang H, et al. Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral
|
[83] | induction. Development, 1999, 126: 2073—2082
|
[84] | 43 Yu X, Shalitin D, Liu X, et al. De-repression of the NC80 motif is critical for the photoactivation of Arabidopsis CRY2. Proc Natl Acad Sci
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|