全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

胁迫相关基因CIPK14在PHYA介导抑制拟南芥远红光黄化苗转绿过程中的作用

, PP. 970-977

Keywords: 叶绿素,CIPK14,远红光,转绿抑制,POR,光敏色素A

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文对CBL互作蛋白激酶,CIPK14参与拟南芥光敏色素A介导的,远红光黄化苗转绿抑制调控进行了研究.结果发现,拟南芥光敏色素A功能缺失突变体(phyA)远红光黄化苗(4天)转入白光处理后,仅0.5h叶片迅速转绿;相同条件下,CIPK14基因插入失活突变体(cipk14)远红光黄化苗,经过15h白光处理之后叶片才开始转绿;野生型(Col-4)远红光黄化苗转绿时间介于突变体phyA与cipk14之间.基因表达分析表明,上述不同基因型拟南芥远红光黄化苗转绿的快慢,与原叶绿素酸酯还原酶基因表达量存在正相关性.结合研究发现——CIPK14基因受到远红光调节,并且表达具有时钟节律性认为,Ca2+调节蛋白CIPK14,可能在PhyA信号传导途径的上游分支介入PhyA介导的远红光黄化苗转绿抑制调控.

References

[1]  1 Trewavas A J, Knight M R. Mechanical signalling, calcium and plant form. Plant Mol Biol, 1994, 26: 1329—1341
[2]  2 Weinl S, Kudla J. The CBL–CIPK Ca2+-decoding signalling network: function and perspectives. New Phytol, 2009, 184: 517—528
[3]  3 Mcainsh M R, Pittman J K. Shaping the calcium signature. New Phytol, 2009, 181: 275—294
[4]  4 Chung E, Park J M, Oh S K, et al. Molecular and biochemical characterization of the Capsicum annuum calcium-dependent protein kinase 3
[5]  (CaCDPK3) gene induced by abiotic and biotic stresses. Planta, 2004, 220: 286—295
[6]  5 Ludwig A A, Saitoh H, Felix G, et al. Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling
[7]  controls stress responses in plants. Proc Natl Acad Sci USA, 2005, 102: 10736—10741
[8]  6 Frohnmeyer H, Loyall L, Blatt M R, et al. Millisecond UV-B irradiation evokes prolonged elevation of cytosolic-free Ca2+ and stimulates
[9]  gene expression in transgenic parsley cell cultures. Plant J, 1999, 20: 109—117
[10]  7 Kim K N, Cheong Y H, Grant J J, et al. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal
[11]  transduction in Arabidopsis. Plant Cell, 2003, 15: 411—423
[12]  8 Trewavas A J, Malhó R. Ca2+ signalling in plant cells: the big network! Curr Opin Plant Biol, 1998, 1: 428—433
[13]  9 Nie X, Durnin D C, Igamberdiev A U, et al. Cytosolic calcium is involved in the regulation of barley hemoglobin gene expression. Planta,
[14]  2006, 223: 542—549
[15]  10 Kolukisaoglu U, Weinl S, Blazevic D, et al. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice
[16]  CBL-CIPK signaling networks. Plant Physiol, 2004, 134: 43—58
[17]  11 Ishitani M, Liu J, Halfter U, et al. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell, 2000, 12:
[18]  1667—1678
[19]  12 Nagae M, Nozawa A, Koizumi N, et al. The crystal structure of the novel calcium-binding protein AtCBL2 from Arabidopsis thaliana. J
[20]  Biol Chem, 2003, 278: 42240—42246
[21]  13 Halfter U, Ishitani M, Zhu J K. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding
[22]  USA, 2007,104: 7289—7294
[23]  44 Barnes S A, Nishizawa N K, Quaggio R B, et al. Far-red light blocks greening of Arabidopsis seedlings via a phytochrome A-mediated
[24]  change in plastid development. Plant Cell, 1996, 8: 601—615
[25]  45 Boylan M T, Quail P H. Phytochrome A overexpression inhibits hypocotyl elongation in transgenic Arabidopsis. Proc Natl Acad Sci USA,
[26]  1991, 88: 10806—10810
[27]  46 Parks B M, Quail P H. hy8, a new class of Arabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell, 1993, 5: 39—
[28]  48
[29]  47 McCormac A C, Terry M J. Loss of nuclear gene expression during the phytochrome A-mediated far-red block of greening response. Plant
[30]  Physiol, 2002, 130: 402—414
[31]  48 Armstrong G A, Runge S, Frick G, et al. Identification of NADPH-protochlorophyllide oxidoreductases A and 6, a branched pathway for
[32]  light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol, 1995, 108: 1505—1517
[33]  49 Holtorf H, Reinbothe S, Reinbothe C, et al. Two routes of chlorophyllide synthesis that are differentially regulated by light in barley
[34]  (Hordeum vulgare L.). Proc Natl Acad Sci USA, 1995, 92: 3254—3258
[35]  protein SOS3. Proc Natl Acad Sci USA, 2000, 97: 3735—3740
[36]  14 Hrabak E M, Chan C W, Gribskov M, et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol, 2003, 132: 666—
[37]  680
[38]  15 Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247—273
[39]  16 Pandey G K, Grant J J, Cheong Y H, et al. Calcineurin-B-like protein CBL9 interacts with target kinase CIPK3 in the regulation of ABA
[40]  response in seed germination. Molecular Plant, 2008, 1: 238—248
[41]  17 秦玉芝, 李旭, 郭明, 等. 钙传感蛋白互作激酶CIPK14 参与拟南芥盐和ABA 胁迫应答调节. 中国科学C 辑: 生命科学, 2008, 38:
[42]  446—457
[43]  18 Johnson C H, Knight M R, Kondo T, et al. Circadian oscillations of cytosolic and chloroplastic free calcium in plants. Science, 1995, 269:
[44]  1863—1865
[45]  19 Webb A A R. The physiology of circadian rhythms in plants. New Phytol, 2003, 160: 281—303
[46]  20 Dodd A N, Love J, Webb A A R. The plant clock shows its metal: circadian regulation of cytosolic free Ca2+. Trends Plant Sci, 2005, 10: 15—
[47]  21
[48]  21 Nancy A E. Circadian regulation of Ca2+ signalling. Plant Cell, 2007, 19: 3317
[49]  22 Love J, Dodd A N, Webb A A R . Circadian and diurnal calcium oscillations encode photoperiodic information in Arabidopsis. Plant Cell,
[50]  2004, 16: 956—966
[51]  23 Harmer S L, Hogenesch J B, Straume M, et al. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science,
[52]  2000, 290: 2110—2113
[53]  24 Edwards K D, Anderson P E, Hall A, et al. FLOWERING LOCUS C mediates natural variation in the high-temperature response of the
[54]  Arabidopsis circadian clock. Plant Cell, 2006, 18: 639—650
[55]  25 Covington M F, Harmer S L. The circadian clock regulates auxin signaling and responses in Arabidopsis. PLoS Biol, 2007, 5: e222
[56]  26 Michael T P, Mockler T C, Breton G, et al. Network discovery pipeline elucidates conserved time-of-day–specific cis-regulatory modules.
[57]  PLoS Genet, 2008, 4: e14
[58]  27 Mizuno T, Yamashino T. Comparative transcriptome of diurnally oscillating genes and hormone-responsive genes in Arabidopsis thaliana:
[59]  insight into circadian clock-controlled daily responses to common ambient stresses in plants. Plant Cell Physiol, 2008, 49: 481—487
[60]  28 Xu X, Hotta C T, Dodd A N, et al. Distinct light and clock modulation of cytosolic free Ca2+ oscillations and rhythmic CHLOROPHYLL
[61]  A/B BINDING PROTEIN2 promoter activity in Arabidopsis. Plant Cell, 2007, 19: 3474—3490
[62]  29 Schafer E, Nagy F. Photomorphogenesis in Plants and Bacteria, 3rd ed. Dordrecht: Springer, 2006
[63]  30 Casson S A, Franklin K A, Gray J E, et al. Phytochrome B and PIF4 regulate stomatal development in response to light quantity. Curr Biol,
[64]  2009, 19: 229—234
[65]  P F, Kay S A. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science, 1998,
[66]  282: 1488—1494
[67]  33 Sharrock R A, Quail P H. Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant
[68]  regulatory photoreceptor family. Genes Dev, 1989, 3: 1745—1757
[69]  34 Clack T, Mathews S, Sharrock R A. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequence and
[70]  expression of PHYD and PHYE. Plant Mol Biol, 1994, 25: 413—427
[71]  35 Franklin K A, Quail P H. Phytochrome functions in Arabidopsis development. J Exp Bot, 2010, 61: 11—24
[72]  36 Wang H, Deng X W. Dissecting the phytochrome A-dependent signaling network in higher plants. Trends Plant Sci, 2003, 8: 172—178
[73]  37 Clough R C, Vierstra R D. Phytochrome degradation. Plant Cell Environ, 1997, 20: 713—721
[74]  38 Sharrock R A, Clack T. Patterns of expression and normalized levels of the five Arabidopsis phytochromes. Plant Physiol, 2002, 130: 442—
[75]  456
[76]  39 Guo H, Mockler T, Duong H, et al. SUB1, an Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction.
[77]  Science, 2001, 19: 487—490
[78]  40 Reed J W, Nagatani A, Elich T D, et al. Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis
[79]  development. Plant Physiol, 1994, 104: 1139—1149
[80]  41 Mockler T, Yang H, Yu X, et al. Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc Natl Acad Sci USA, 2003, 100:
[81]  2140—2145
[82]  42 Mockler T C, Guo H, Yang H, et al. Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral
[83]  induction. Development, 1999, 126: 2073—2082
[84]  43 Yu X, Shalitin D, Liu X, et al. De-repression of the NC80 motif is critical for the photoactivation of Arabidopsis CRY2. Proc Natl Acad Sci

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133