[1] | 1 Zahrt T C. Molecular mechanisms regulating persistent Mycobacterium tuberculosis infection. Microbes Infect, 2003, 5: 159—167
|
[2] | 2 McKinney J D, Honer zu Bentrup K, Munoz-Elias E J, et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires
|
[3] | the glyoxylate shunt enzyme isocitrate lyase. Nature, 2000, 406: 735—738
|
[4] | 3 Wayne L G, Lin K Y. Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions. Infect
|
[5] | Immun, 1982, 37: 1042—1049
|
[6] | 4 Fritz C, Maass S, Kreft A, et al. Dependence of Mycobacterium bovis BCG on anaerobic nitrate reductase for persistence is tissue specific.
|
[7] | Infect Immun, 2002, 70: 286—291
|
[8] | 5 Hutter B, Dick T. Analysis of the dormancy-inducible narK2 promoter in Mycobacterium bovis BCG. FEMS Microbiol Lett, 2000, 188: 141—
|
[9] | 146
|
[10] | 6 Glickman M S, Cox J S, Jacobs W R Jr. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of
|
[11] | Mycobacterium tuberculosis. Mol Cell, 2000, 5: 717—727
|
[12] | 7 Murphy H N, Stewart G R, Mischenko V V, et al. The OtsAB pathway is essential for trehalose biosynthesis in Mycobacterium tuberculosis.
|
[13] | J Biol Chem, 2005, 280: 14524—14529
|
[14] | 8 Zahrt T C, Deretic V. Mycobacterium tuberculosis signal transduction system required for persistent infections. Proc Natl Acad Sci USA,
|
[15] | 2001, 98: 12706—12711
|
[16] | 9 Parish T, Smith D A, Kendall S, et al. Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis.
|
[17] | Infect Immun, 2003, 71: 1134—1140
|
[18] | 10 Chen P, Ruiz R E, Li Q, et al. Construction and characterization of a Mycobacterium tuberculosis mutant lacking the alternate sigma factor gene, sigF. Infect Immun, 2000, 68: 5575—5580
|
[19] | 11 Kaushal D, Schroeder B G, Tyagi S, et al. Reduced immunopathology and mortality despite tissue persistence in a Mycobacterium
|
[20] | tuberculosis mutant lacking alternative sigma factor, SigH. Proc Natl Acad Sci USA, 2002, 99: 8330—8335
|
[21] | 12 Ando M, Yoshimatsu T, Ko C, et al. Deletion of Mycobacterium tuberculosis sigma factor E results in delayed time to death with bacterial
|
[22] | persistence in the lungs of aerosol-infected mice. Infect Immun, 2003, 71: 7170—7172
|
[23] | 13 Steyn A J, Collins D M, Hondalus M K, et al. Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is
|
[24] | dispensable for in vivo growth. Proc Natl Acad Sci USA, 2002, 99: 3147—3152
|
[25] | 14 Primm T P, Andersen S J, Mizrahi V, et al. The stringent response of Mycobacterium tuberculosis is required for long-term survival. J
|
[26] | Bacteriol, 2000, 182: 4889—4898
|
[27] | 15 Hu Y, Movahedzadeh F, Stoker N G, et al. Deletion of the Mycobacterium tuberculosis alpha-crystallin-like hspX gene causes increased
|
[28] | bacterial growth in vivo. Infect Immun, 2006, 74: 861—868
|
[29] | 16 Stewart G R, Snewin V A, Walzl G, et al. Overexpression of heat-shock proteins reduces survival of Mycobacterium tuberculosis in the
|
[30] | chronic phase of infection. Nat Med, 2001, 7: 732—737
|
[31] | 17 Li Z, Kelley C, Collins F, et al. Expression of katG in Mycobacterium tuberculosis is associated with its growth and persistence in mice and
|
[32] | guinea pigs. J Infect Dis, 1998, 177: 1030—1035
|
[33] | 18 Gould T A, van de Langemheen H, Munoz-Elias E J, et al. Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in
|
[34] | Mycobacterium tuberculosis. Mol Microbiol, 2006, 61: 940—947
|
[35] | 19 Kumar R, Bhakuni V. Mycobacterium tuberculosis isocitrate lyase (MtbIcl): role of divalent cations in modulation of functional and
|
[36] | structural properties. Proteins, 2008, 72: 892—900
|
[37] | 20 Wayne L G, Hayes L G. Nitrate reduction as a marker for hypoxic shiftdown of Mycobacterium tuberculosis. Tuber Lung Dis, 1998, 79:
|
[38] | 127—132
|
[39] | 21 Sohaskey C D, Modesti L. Differences in nitrate reduction between Mycobacterium tuberculosis and Mycobacterium bovis are due to
|
[40] | differential expression of both narGHJI and narK2. FEMS Microbiol Lett, 2009, 290: 129—134
|
[41] | 22 Sohaskey C D. Regulation of nitrate reductase activity in Mycobacterium tuberculosis by oxygen and nitric oxide. Microbiology, 2005, 151:
|
[42] | 3803—3810
|
[43] | 23 Honer zu Bentrup K, Russell D G. Mycobacterial persistence: adaptation to a changing environment. Trends Microbiol, 2001, 9: 597—605
|
[44] | 24 Sohaskey C D, Wayne L G. Role of narK2X and narGHJI in hypoxic upregulation of nitrate reduction by Mycobacterium tuberculosis. J
|
[45] | Bacteriol, 2003, 185: 7247—7256
|
[46] | 25 Rao V, Gao F, Chen B, et al. Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosisinduced
|
[47] | inflammation and virulence. J Clin Invest, 2006, 116: 1660—1667
|
[48] | 26 De Smet K A, Weston A, Brown I N, et al. Three pathways for trehalose biosynthesis in mycobacteria. Microbiology, 2000, 146: 199—208
|
[49] | 27 Hunter R L, Olsen M, Jagannath C, et al. Trehalose 6, 6′-dimycolate and lipid in the pathogenesis of caseating granulomas of tuberculosis in
|
[50] | mice. Am J Pathol, 2006, 168: 1249—1261
|
[51] | 28 Ryll R, Kumazawa Y, Yano I. Immunological properties of trehalose dimycolate (cord factor) and other mycolic acid-containing glycolipids—— a
|
[52] | review. Microbiol Immunol, 2001, 45: 801—811
|
[53] | 29 Hunter R L, Venkataprasad N, Olsen M R. The role of trehalose dimycolate (cord factor) on morphology of virulent M. tuberculosis in vitro.
|
[54] | Tuberculosis (Edinb), 2006, 86: 349—356
|
[55] | 30 Kan-Sutton C, Jagannath C, Hunter R L Jr. Trehalose 6, 6''-dimycolate on the surface of Mycobacterium tuberculosis modulates surface
|
[56] | marker expression for antigen presentation and costimulation in murine macrophages. Microbes Infect, 2009, 11: 40—48
|
[57] | 31 He H, Hovey R, Kane J, et al. MprAB is a stress-responsive two-component system that directly regulates expression of sigma factors SigB
|
[58] | and SigE in Mycobacterium tuberculosis. J Bacteriol, 2006, 188: 2134—2143
|
[59] | 32 Pang X, Vu P, Byrd T F, et al. Evidence for complex interactions of stress-associated regulons in an mprAB deletion mutant of
|
[60] | Mycobacterium tuberculosis. Microbiology, 2007, 153: 1229—1242
|
[61] | 33 Manganelli R, Voskuil M I, Schoolnik G K, et al. The Mycobacterium tuberculosis ECF sigma factor sigmaE: role in global gene expression
|
[62] | and survival in macrophages. Mol Microbiol, 2001, 41: 423—437
|
[63] | 34 Pang X, Howard S T. Regulation of the alpha-crystallin gene acr2 by the MprAB two-component system of Mycobacterium tuberculosis. J
|
[64] | Bacteriol, 2007, 189: 6213—6221
|
[65] | 35 He H, Zahrt T C. Identification and characterization of a regulatory sequence recognized by Mycobacterium tuberculosis persistence
|
[66] | regulator MprA. J Bacteriol, 2005, 187: 202—212
|
[67] | 36 Kumar A, Toledo J C, Patel R P, et al. Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. Proc Natl Acad
|
[68] | Sci USA, 2007, 104: 11568—11573
|
[69] | 37 Kendall S L, Movahedzadeh F, Rison S C, et al. The Mycobacterium tuberculosis dosRS two-component system is induced by multiple
|
[70] | stresses. Tuberculosis, 2004, 84: 247—255
|
[71] | 38 Malhotra V, Sharma D, Ramanathan V D, et al. Disruption of response regulator gene, devR, leads to attenuation in virulence of
|
[72] | Mycobacterium tuberculosis. FEMS Microbiol Lett, 2004, 231: 237—245
|
[73] | 39 Converse P J, Karakousis P C, Klinkenberg L G, et al. Role of the dosR-dosS two-component regulatory system in Mycobacterium
|
[74] | tuberculosis virulence in three animal models. Infect Immun, 2009, 77: 1230—1237
|
[75] | 40 Park H D, Guinn K M, Harrell M I, et al. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium
|
[76] | tuberculosis. Mol Microbiol, 2003, 48: 833—843
|
[77] | 41 Walderhaug M O, Polarek J W, Voelkner P, et al. KdpD and KdpE, proteins that control expression of the kdpABC operon, are members of
|
[78] | the two-component sensor-effector class of regulators. J Bacteriol, 1992, 174: 2152—2159
|
[79] | 42 Steyn A J, Joseph J, Bloom B R. Interaction of the sensor module of Mycobacterium tuberculosis H37Rv KdpD with members of the Lpr
|
[80] | family. Mol Microbiol, 2003, 47: 1075—1089
|
[81] | 43 Haydel S E, Clark-Curtiss J E. Global expression analysis of two-component system regulator genes during Mycobacterium tuberculosis
|
[82] | growth in human macrophages. FEMS Microbiol Lett, 2004, 236: 341—347
|
[83] | 44 Bacon J, Dover L G, Hatch K A, et al. Lipid composition and transcriptional response of Mycobacterium tuberculosis grown under
|
[84] | iron-limitation in continuous culture: identification of a novel wax ester. Microbiology, 2007, 153: 1435—1444
|
[85] | 45 Betts J C, Lukey P T, Robb L C, et al. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and
|
[86] | protein expression profiling. Mol Microbiol, 2002, 43: 717—731
|
[87] | 46 DeMaio J, Zhang Y, Ko C, et al. A stationary-phase stress-response sigma factor from Mycobacterium tuberculosis. Proc Natl Acad Sci
|
[88] | USA, 1996, 93: 2790—2794
|
[89] | 47 Geiman D E, Kaushal D, Ko C, et al. Attenuation of late-stage disease in mice infected by the Mycobacterium tuberculosis mutant lacking
|
[90] | the SigF alternate sigma factor and identification of SigF-dependent genes by microarray analysis. Infect Immun, 2004, 72: 1733—1745
|
[91] | 48 Dainese E, Rodrigue S, Delogu G, et al. Posttranslational regulation of Mycobacterium tuberculosis extracytoplasmic-function sigma factor
|
[92] | sigma L and roles in virulence and in global regulation of gene expression. Infect Immun, 2006, 74: 2457—2461
|
[93] | 49 Williams E P, Lee J H, Bishai W R, et al. Mycobacterium tuberculosis SigF regulates genes encoding cell wall-associated proteins and
|
[94] | directly regulates the transcriptional regulatory gene phoY1. J Bacteriol, 2007, 189: 4234—4242
|
[95] | 50 Raman S, Song T, Puyang X, et al. The alternative sigma factor SigH regulates major components of oxidative and heat stress responses in
|
[96] | Mycobacterium tuberculosis. J Bacteriol, 2001, 183: 6119—6125
|
[97] | 51 Manganelli R, Voskuil M I, Schoolnik G K, et al. Role of the extracytoplasmic-function sigma factor sigma(H) in Mycobacterium
|
[98] | tuberculosis global gene expression. Mol Microbiol, 2002, 45: 365—374
|
[99] | 52 Mulder N J, Zappe H, Steyn L M. Characterization of a Mycobacterium tuberculosis homologue of the Streptomyces coelicolor whiB gene.
|
[100] | Tuber Lung Dis, 1999, 79: 299—308
|
[101] | 53 Singh A, Guidry L, Narasimhulu K V, et al. Mycobacterium tuberculosis WhiB3 responds to O2 and nitric oxide via its [4Fe-4S] cluster and
|
[102] | is essential for nutrient starvation survival. Proc Natl Acad Sci USA, 2007, 104: 11562—11567
|
[103] | 54 Singh A, Crossman D K, Mai D, et al. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid
|
[104] | anabolism to modulate macrophage response. PLoS Pathog, 2009, 5: e1000545
|
[105] | 55 Banaiee N, Jacobs W R Jr, Ernst J D. Regulation of Mycobacterium tuberculosis whiB3 in the mouse lung and macrophages. Infect Immun,
|
[106] | 2006, 74: 6449—6457
|
[107] | 56 Avarbock D, Salem J, Li L S, et al. Cloning and characterization of a bifunctional RelA/SpoT homologue from Mycobacterium tuberculosis.
|
[108] | Gene, 1999, 233: 261—269
|
[109] | 67 Lowrie D B, Tascon R E, Bonato V L, et al. Therapy of tuberculosis in mice by DNA vaccination. Nature, 1999, 400: 269—271
|
[110] | 68 Flores Valdez M A, Schoolnik G K. DosR-regulon genes induction in Mycobacterium bovis BCG under aerobic conditions. Tuberculosis,
|
[111] | 2010, 90: 197—200
|
[112] | 69 Murphy D J, Brown J R. Novel drug target strategies against Mycobacterium tuberculosis. Curr Opin Microbiol, 2008, 11: 422—427
|
[113] | 70 Gomez J E, McKinney J D. M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis, 2004, 84: 29—44
|
[114] | 71 Kong Y, Yao H, Ren H, et al. Imaging tuberculosis with endogenous {beta}-lactamase reporter enzyme fluorescence in live mice. Proc Natl
|
[115] | Acad Sci USA, 2010, 107: 12239—12244
|
[116] | 57 Dahl J L, Kraus C N, Boshoff H I, et al. The role of RelMtb-mediated adaptation to stationary phase in long-term persistence of
|
[117] | Mycobacterium tuberculosis in mice. Proc Natl Acad Sci USA, 2003, 100: 10026—10031
|
[118] | 58 Cunningham A F, Spreadbury C L. Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of
|
[119] | the 16-kilodalton alpha-crystallin homolog. J Bacteriol, 1998, 180: 801—808
|
[120] | 59 Yuan Y, Crane D D, Barry C E. Stationary phase-associated protein expression in Mycobacterium tuberculosis: function of the
|
[121] | mycobacterial alpha-crystallin homolog. J Bacteriol, 1996, 178: 4484—4492
|
[122] | 60 Sureka K, Dey S, Datta P, et al. Polyphosphate kinase is involved in stress-induced mprAB-sigE-rel signalling in mycobacteria. Mol Microbiol, 2007, 65: 261—276
|
[123] | 61 Domenech P, Reed M B, Barry C E. Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance.
|
[124] | Infect Immun, 2005, 73: 3492—3501
|
[125] | 62 Romero I C, Mehaffy C, Burchmore R J, et al. Identification of promoter-binding proteins of the fbp A and C genes in Mycobacterium
|
[126] | tuberculosis. Tuberculosis (Edinb), 2010, 90: 25—30
|
[127] | 63 Lee J H, Karakousis P C, Bishai W R. Roles of SigB and SigF in the Mycobacterium tuberculosis sigma factor network. J Bacteriol, 2008,
|
[128] | 190: 699—707
|
[129] | 64 Fontan P A, Voskuil M I, Gomez M, et al. The Mycobacterium tuberculosis sigma factor sigmaB is required for full response to cell
|
[130] | envelope stress and hypoxia in vitro, but it is dispensable for in vivo growth. J Bacteriol, 2009, 191: 5628—5633
|
[131] | 65 Lin M Y, Ottenhoff T H. Not to wake a sleeping giant: new insights into host-pathogen interactions identify new targets for vaccination
|
[132] | against latent Mycobacterium tuberculosis infection. Biol Chem, 2008, 389: 497—511
|
[133] | 66 Geluk A, Lin M Y, van Meijgaarden K E, et al. T-cell recognition of the HspX protein of Mycobacterium tuberculosis correlates with latent
|
[134] | M. tuberculosis infection but not with M. bovis BCG vaccination. Infect Immun, 2007, 75: 2914—2921
|