全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

结核分枝杆菌持续感染相关基因及其调控网络分析

, PP. 909-919

Keywords: 结核分枝杆菌,持续感染,基因,网络

Full-Text   Cite this paper   Add to My Lib

Abstract:

结核分枝杆菌是结核病的致病菌,也是迄今最成功的人类致病菌之一.结核分枝杆菌能逃避宿主免疫攻击,在人体内持续感染或呈休眠状态.当人体免疫功能低下时,持续感染或休眠的致病菌可能被重新激活.结核分枝杆菌的持续感染是制约结核病控制计划成功的主要障碍之一.揭示结核分枝杆菌持续感染的分子机制、寻找其中薄弱环节、发现适当的药物靶标并开发全新药物及免疫干预措施,被认为是遏制结核病蔓延的关键.结核分枝杆菌持续感染和再激活是众多基因协同的系统适应过程.本文在全面分析全球结核分枝杆菌持续感染相关基因研究文献的基础上,通过文本挖掘,综合本实验室前期研究结果,提出了结核分枝杆菌持续感染相关基因的调控网络,为揭示结核分枝杆菌持续感染的机制,筛选控制结核病的新靶标和免疫干预节点提供研究基础.

References

[1]  1 Zahrt T C. Molecular mechanisms regulating persistent Mycobacterium tuberculosis infection. Microbes Infect, 2003, 5: 159—167
[2]  2 McKinney J D, Honer zu Bentrup K, Munoz-Elias E J, et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires
[3]  the glyoxylate shunt enzyme isocitrate lyase. Nature, 2000, 406: 735—738
[4]  3 Wayne L G, Lin K Y. Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions. Infect
[5]  Immun, 1982, 37: 1042—1049
[6]  4 Fritz C, Maass S, Kreft A, et al. Dependence of Mycobacterium bovis BCG on anaerobic nitrate reductase for persistence is tissue specific.
[7]  Infect Immun, 2002, 70: 286—291
[8]  5 Hutter B, Dick T. Analysis of the dormancy-inducible narK2 promoter in Mycobacterium bovis BCG. FEMS Microbiol Lett, 2000, 188: 141—
[9]  146
[10]  6 Glickman M S, Cox J S, Jacobs W R Jr. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of
[11]  Mycobacterium tuberculosis. Mol Cell, 2000, 5: 717—727
[12]  7 Murphy H N, Stewart G R, Mischenko V V, et al. The OtsAB pathway is essential for trehalose biosynthesis in Mycobacterium tuberculosis.
[13]  J Biol Chem, 2005, 280: 14524—14529
[14]  8 Zahrt T C, Deretic V. Mycobacterium tuberculosis signal transduction system required for persistent infections. Proc Natl Acad Sci USA,
[15]  2001, 98: 12706—12711
[16]  9 Parish T, Smith D A, Kendall S, et al. Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis.
[17]  Infect Immun, 2003, 71: 1134—1140
[18]  10 Chen P, Ruiz R E, Li Q, et al. Construction and characterization of a Mycobacterium tuberculosis mutant lacking the alternate sigma factor gene, sigF. Infect Immun, 2000, 68: 5575—5580
[19]  11 Kaushal D, Schroeder B G, Tyagi S, et al. Reduced immunopathology and mortality despite tissue persistence in a Mycobacterium
[20]  tuberculosis mutant lacking alternative sigma factor, SigH. Proc Natl Acad Sci USA, 2002, 99: 8330—8335
[21]  12 Ando M, Yoshimatsu T, Ko C, et al. Deletion of Mycobacterium tuberculosis sigma factor E results in delayed time to death with bacterial
[22]  persistence in the lungs of aerosol-infected mice. Infect Immun, 2003, 71: 7170—7172
[23]  13 Steyn A J, Collins D M, Hondalus M K, et al. Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is
[24]  dispensable for in vivo growth. Proc Natl Acad Sci USA, 2002, 99: 3147—3152
[25]  14 Primm T P, Andersen S J, Mizrahi V, et al. The stringent response of Mycobacterium tuberculosis is required for long-term survival. J
[26]  Bacteriol, 2000, 182: 4889—4898
[27]  15 Hu Y, Movahedzadeh F, Stoker N G, et al. Deletion of the Mycobacterium tuberculosis alpha-crystallin-like hspX gene causes increased
[28]  bacterial growth in vivo. Infect Immun, 2006, 74: 861—868
[29]  16 Stewart G R, Snewin V A, Walzl G, et al. Overexpression of heat-shock proteins reduces survival of Mycobacterium tuberculosis in the
[30]  chronic phase of infection. Nat Med, 2001, 7: 732—737
[31]  17 Li Z, Kelley C, Collins F, et al. Expression of katG in Mycobacterium tuberculosis is associated with its growth and persistence in mice and
[32]  guinea pigs. J Infect Dis, 1998, 177: 1030—1035
[33]  18 Gould T A, van de Langemheen H, Munoz-Elias E J, et al. Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in
[34]  Mycobacterium tuberculosis. Mol Microbiol, 2006, 61: 940—947
[35]  19 Kumar R, Bhakuni V. Mycobacterium tuberculosis isocitrate lyase (MtbIcl): role of divalent cations in modulation of functional and
[36]  structural properties. Proteins, 2008, 72: 892—900
[37]  20 Wayne L G, Hayes L G. Nitrate reduction as a marker for hypoxic shiftdown of Mycobacterium tuberculosis. Tuber Lung Dis, 1998, 79:
[38]  127—132
[39]  21 Sohaskey C D, Modesti L. Differences in nitrate reduction between Mycobacterium tuberculosis and Mycobacterium bovis are due to
[40]  differential expression of both narGHJI and narK2. FEMS Microbiol Lett, 2009, 290: 129—134
[41]  22 Sohaskey C D. Regulation of nitrate reductase activity in Mycobacterium tuberculosis by oxygen and nitric oxide. Microbiology, 2005, 151:
[42]  3803—3810
[43]  23 Honer zu Bentrup K, Russell D G. Mycobacterial persistence: adaptation to a changing environment. Trends Microbiol, 2001, 9: 597—605
[44]  24 Sohaskey C D, Wayne L G. Role of narK2X and narGHJI in hypoxic upregulation of nitrate reduction by Mycobacterium tuberculosis. J
[45]  Bacteriol, 2003, 185: 7247—7256
[46]  25 Rao V, Gao F, Chen B, et al. Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosisinduced
[47]  inflammation and virulence. J Clin Invest, 2006, 116: 1660—1667
[48]  26 De Smet K A, Weston A, Brown I N, et al. Three pathways for trehalose biosynthesis in mycobacteria. Microbiology, 2000, 146: 199—208
[49]  27 Hunter R L, Olsen M, Jagannath C, et al. Trehalose 6, 6′-dimycolate and lipid in the pathogenesis of caseating granulomas of tuberculosis in
[50]  mice. Am J Pathol, 2006, 168: 1249—1261
[51]  28 Ryll R, Kumazawa Y, Yano I. Immunological properties of trehalose dimycolate (cord factor) and other mycolic acid-containing glycolipids—— a
[52]  review. Microbiol Immunol, 2001, 45: 801—811
[53]  29 Hunter R L, Venkataprasad N, Olsen M R. The role of trehalose dimycolate (cord factor) on morphology of virulent M. tuberculosis in vitro.
[54]  Tuberculosis (Edinb), 2006, 86: 349—356
[55]  30 Kan-Sutton C, Jagannath C, Hunter R L Jr. Trehalose 6, 6''-dimycolate on the surface of Mycobacterium tuberculosis modulates surface
[56]  marker expression for antigen presentation and costimulation in murine macrophages. Microbes Infect, 2009, 11: 40—48
[57]  31 He H, Hovey R, Kane J, et al. MprAB is a stress-responsive two-component system that directly regulates expression of sigma factors SigB
[58]  and SigE in Mycobacterium tuberculosis. J Bacteriol, 2006, 188: 2134—2143
[59]  32 Pang X, Vu P, Byrd T F, et al. Evidence for complex interactions of stress-associated regulons in an mprAB deletion mutant of
[60]  Mycobacterium tuberculosis. Microbiology, 2007, 153: 1229—1242
[61]  33 Manganelli R, Voskuil M I, Schoolnik G K, et al. The Mycobacterium tuberculosis ECF sigma factor sigmaE: role in global gene expression
[62]  and survival in macrophages. Mol Microbiol, 2001, 41: 423—437
[63]  34 Pang X, Howard S T. Regulation of the alpha-crystallin gene acr2 by the MprAB two-component system of Mycobacterium tuberculosis. J
[64]  Bacteriol, 2007, 189: 6213—6221
[65]  35 He H, Zahrt T C. Identification and characterization of a regulatory sequence recognized by Mycobacterium tuberculosis persistence
[66]  regulator MprA. J Bacteriol, 2005, 187: 202—212
[67]  36 Kumar A, Toledo J C, Patel R P, et al. Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. Proc Natl Acad
[68]  Sci USA, 2007, 104: 11568—11573
[69]  37 Kendall S L, Movahedzadeh F, Rison S C, et al. The Mycobacterium tuberculosis dosRS two-component system is induced by multiple
[70]  stresses. Tuberculosis, 2004, 84: 247—255
[71]  38 Malhotra V, Sharma D, Ramanathan V D, et al. Disruption of response regulator gene, devR, leads to attenuation in virulence of
[72]  Mycobacterium tuberculosis. FEMS Microbiol Lett, 2004, 231: 237—245
[73]  39 Converse P J, Karakousis P C, Klinkenberg L G, et al. Role of the dosR-dosS two-component regulatory system in Mycobacterium
[74]  tuberculosis virulence in three animal models. Infect Immun, 2009, 77: 1230—1237
[75]  40 Park H D, Guinn K M, Harrell M I, et al. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium
[76]  tuberculosis. Mol Microbiol, 2003, 48: 833—843
[77]  41 Walderhaug M O, Polarek J W, Voelkner P, et al. KdpD and KdpE, proteins that control expression of the kdpABC operon, are members of
[78]  the two-component sensor-effector class of regulators. J Bacteriol, 1992, 174: 2152—2159
[79]  42 Steyn A J, Joseph J, Bloom B R. Interaction of the sensor module of Mycobacterium tuberculosis H37Rv KdpD with members of the Lpr
[80]  family. Mol Microbiol, 2003, 47: 1075—1089
[81]  43 Haydel S E, Clark-Curtiss J E. Global expression analysis of two-component system regulator genes during Mycobacterium tuberculosis
[82]  growth in human macrophages. FEMS Microbiol Lett, 2004, 236: 341—347
[83]  44 Bacon J, Dover L G, Hatch K A, et al. Lipid composition and transcriptional response of Mycobacterium tuberculosis grown under
[84]  iron-limitation in continuous culture: identification of a novel wax ester. Microbiology, 2007, 153: 1435—1444
[85]  45 Betts J C, Lukey P T, Robb L C, et al. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and
[86]  protein expression profiling. Mol Microbiol, 2002, 43: 717—731
[87]  46 DeMaio J, Zhang Y, Ko C, et al. A stationary-phase stress-response sigma factor from Mycobacterium tuberculosis. Proc Natl Acad Sci
[88]  USA, 1996, 93: 2790—2794
[89]  47 Geiman D E, Kaushal D, Ko C, et al. Attenuation of late-stage disease in mice infected by the Mycobacterium tuberculosis mutant lacking
[90]  the SigF alternate sigma factor and identification of SigF-dependent genes by microarray analysis. Infect Immun, 2004, 72: 1733—1745
[91]  48 Dainese E, Rodrigue S, Delogu G, et al. Posttranslational regulation of Mycobacterium tuberculosis extracytoplasmic-function sigma factor
[92]  sigma L and roles in virulence and in global regulation of gene expression. Infect Immun, 2006, 74: 2457—2461
[93]  49 Williams E P, Lee J H, Bishai W R, et al. Mycobacterium tuberculosis SigF regulates genes encoding cell wall-associated proteins and
[94]  directly regulates the transcriptional regulatory gene phoY1. J Bacteriol, 2007, 189: 4234—4242
[95]  50 Raman S, Song T, Puyang X, et al. The alternative sigma factor SigH regulates major components of oxidative and heat stress responses in
[96]  Mycobacterium tuberculosis. J Bacteriol, 2001, 183: 6119—6125
[97]  51 Manganelli R, Voskuil M I, Schoolnik G K, et al. Role of the extracytoplasmic-function sigma factor sigma(H) in Mycobacterium
[98]  tuberculosis global gene expression. Mol Microbiol, 2002, 45: 365—374
[99]  52 Mulder N J, Zappe H, Steyn L M. Characterization of a Mycobacterium tuberculosis homologue of the Streptomyces coelicolor whiB gene.
[100]  Tuber Lung Dis, 1999, 79: 299—308
[101]  53 Singh A, Guidry L, Narasimhulu K V, et al. Mycobacterium tuberculosis WhiB3 responds to O2 and nitric oxide via its [4Fe-4S] cluster and
[102]  is essential for nutrient starvation survival. Proc Natl Acad Sci USA, 2007, 104: 11562—11567
[103]  54 Singh A, Crossman D K, Mai D, et al. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid
[104]  anabolism to modulate macrophage response. PLoS Pathog, 2009, 5: e1000545
[105]  55 Banaiee N, Jacobs W R Jr, Ernst J D. Regulation of Mycobacterium tuberculosis whiB3 in the mouse lung and macrophages. Infect Immun,
[106]  2006, 74: 6449—6457
[107]  56 Avarbock D, Salem J, Li L S, et al. Cloning and characterization of a bifunctional RelA/SpoT homologue from Mycobacterium tuberculosis.
[108]  Gene, 1999, 233: 261—269
[109]  67 Lowrie D B, Tascon R E, Bonato V L, et al. Therapy of tuberculosis in mice by DNA vaccination. Nature, 1999, 400: 269—271
[110]  68 Flores Valdez M A, Schoolnik G K. DosR-regulon genes induction in Mycobacterium bovis BCG under aerobic conditions. Tuberculosis,
[111]  2010, 90: 197—200
[112]  69 Murphy D J, Brown J R. Novel drug target strategies against Mycobacterium tuberculosis. Curr Opin Microbiol, 2008, 11: 422—427
[113]  70 Gomez J E, McKinney J D. M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis, 2004, 84: 29—44
[114]  71 Kong Y, Yao H, Ren H, et al. Imaging tuberculosis with endogenous {beta}-lactamase reporter enzyme fluorescence in live mice. Proc Natl
[115]  Acad Sci USA, 2010, 107: 12239—12244
[116]  57 Dahl J L, Kraus C N, Boshoff H I, et al. The role of RelMtb-mediated adaptation to stationary phase in long-term persistence of
[117]  Mycobacterium tuberculosis in mice. Proc Natl Acad Sci USA, 2003, 100: 10026—10031
[118]  58 Cunningham A F, Spreadbury C L. Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of
[119]  the 16-kilodalton alpha-crystallin homolog. J Bacteriol, 1998, 180: 801—808
[120]  59 Yuan Y, Crane D D, Barry C E. Stationary phase-associated protein expression in Mycobacterium tuberculosis: function of the
[121]  mycobacterial alpha-crystallin homolog. J Bacteriol, 1996, 178: 4484—4492
[122]  60 Sureka K, Dey S, Datta P, et al. Polyphosphate kinase is involved in stress-induced mprAB-sigE-rel signalling in mycobacteria. Mol Microbiol, 2007, 65: 261—276
[123]  61 Domenech P, Reed M B, Barry C E. Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance.
[124]  Infect Immun, 2005, 73: 3492—3501
[125]  62 Romero I C, Mehaffy C, Burchmore R J, et al. Identification of promoter-binding proteins of the fbp A and C genes in Mycobacterium
[126]  tuberculosis. Tuberculosis (Edinb), 2010, 90: 25—30
[127]  63 Lee J H, Karakousis P C, Bishai W R. Roles of SigB and SigF in the Mycobacterium tuberculosis sigma factor network. J Bacteriol, 2008,
[128]  190: 699—707
[129]  64 Fontan P A, Voskuil M I, Gomez M, et al. The Mycobacterium tuberculosis sigma factor sigmaB is required for full response to cell
[130]  envelope stress and hypoxia in vitro, but it is dispensable for in vivo growth. J Bacteriol, 2009, 191: 5628—5633
[131]  65 Lin M Y, Ottenhoff T H. Not to wake a sleeping giant: new insights into host-pathogen interactions identify new targets for vaccination
[132]  against latent Mycobacterium tuberculosis infection. Biol Chem, 2008, 389: 497—511
[133]  66 Geluk A, Lin M Y, van Meijgaarden K E, et al. T-cell recognition of the HspX protein of Mycobacterium tuberculosis correlates with latent
[134]  M. tuberculosis infection but not with M. bovis BCG vaccination. Infect Immun, 2007, 75: 2914—2921

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133